Crystal Research and Technology最新文献

筛选
英文 中文
Influence of Ultrasonic Irradiation on Crystal Nucleation, Morphology and Structural Properties of Maltol Polymorphs I and II From Aqueous Solution 超声辐照对水溶液中麦芽糖醇多晶I和II结晶成核、形貌和结构性能的影响
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-11-21 DOI: 10.1002/crat.202400160
Kavipriya Srinivasan, Srinivasan Karuppannan
{"title":"Influence of Ultrasonic Irradiation on Crystal Nucleation, Morphology and Structural Properties of Maltol Polymorphs I and II From Aqueous Solution","authors":"Kavipriya Srinivasan,&nbsp;Srinivasan Karuppannan","doi":"10.1002/crat.202400160","DOIUrl":"https://doi.org/10.1002/crat.202400160","url":null,"abstract":"<p>The impact of ultrasound on the nucleation control and separation of maltol polymorphs in aqueous solution has been studied for the first time. The study involved varying ultrasound parameters such as power (ranging from 75 to 225 W), pulse rate (from 10% to 50%), and insonation time (2, 4, and 6 min) at room temperature and at different supersaturation levels. In addition to the expected effects of supersaturation on induction time, nucleation, and morphology of the maltol polymorphs, ultrasound is found to have a significant influence on nucleation control and separation of the polymorphs. The results reveal that ultrasound promotes the nucleation of maltol polymorphs with shorter induction times by creating nucleation hot spots through cavitation effect, and improves the quality of the crystals. Notably, under specific conditions, ultrasound induces the nucleation of a rare metastable Form-II polymorph of maltol in aqueous solution, while without ultrasound, only the stable Form-I polymorph is obtained. Morphology of the nucleated polymorphs is observed using in situ optical microscopy, and their structure is confirmed through powder X-ray diffraction (PXRD) and single crystal X-ray diffraction (SCXRD) analyses. Furthermore, thermal stability of the grown stable Form-I and metastable Form-II polymorphs of maltol is verified using differential scanning calorimetry (DSC).</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"60 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Growth Kinetics on KDP Crystal (101) Faces In Situ Observed by Michelson Interference 用迈克尔逊干涉观察KDP晶体(101)面原位生长动力学
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-11-21 DOI: 10.1002/crat.202400205
Xianglin Li, Xuecheng Cao, Xiaojie Li, Huihui Zhao, Ruoxian Hou, Shenglai Wang
{"title":"Growth Kinetics on KDP Crystal (101) Faces In Situ Observed by Michelson Interference","authors":"Xianglin Li,&nbsp;Xuecheng Cao,&nbsp;Xiaojie Li,&nbsp;Huihui Zhao,&nbsp;Ruoxian Hou,&nbsp;Shenglai Wang","doi":"10.1002/crat.202400205","DOIUrl":"https://doi.org/10.1002/crat.202400205","url":null,"abstract":"<p>The effect of rotational speeds on the growth kinetics of KDP crystal (101) faces is explored by the Michelson interference technique. The experimental results show that the growth rates rise as the rotational speed increases. The decrease in rotational speed affects the slopes of growth hillock on KDP crystal (101) faces, resulting in an overall decrease in the slopes. The kinetic coefficient of KDP crystal (101) face increases with increasing rotational speeds, and always βI, βII&gt;βIII.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"60 1","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118068","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Particle Size and Crystal habit Modification of Ammonium Perchlorate Using Cooling Sonocrystallization Process 利用冷却声波结晶工艺改变高氯酸铵的粒度和晶体习性
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-11-17 DOI: 10.1002/crat.202400163
Shumin Lin, Salal Hasan Khudaida, Chie-Shaan Su
{"title":"Particle Size and Crystal habit Modification of Ammonium Perchlorate Using Cooling Sonocrystallization Process","authors":"Shumin Lin,&nbsp;Salal Hasan Khudaida,&nbsp;Chie-Shaan Su","doi":"10.1002/crat.202400163","DOIUrl":"https://doi.org/10.1002/crat.202400163","url":null,"abstract":"<p>Ammonium perchlorate (AP) is a widely used solid oxidizer in solid propellant formulations, with its particle size and crystal habit significantly affecting performance. Since controlling these properties remains challenging, this study employs an intensified crystallization strategy, specifically a cooling sonocrystallization process, to recrystallize AP to control and modify its particle size and crystal habit. The effects of solution concentration, sonication intensity, sonication pulse on/off recipe, and cooling rate on the recrystallization of AP are first investigated using a Taguchi L9 orthogonal array design. By understanding the main effect of these operating parameters, further sonocrystallization experiments are designed for process improvement. Compared with the unprocessed AP, the crystal habit and mean particle size of AP are considerably modified after cooling sonocrystallization, achieving a mean size of approximately 50 µm with a regular habit. Consistency in crystal structure and spectrometric properties between sonocrystallized and unprocessed AP was confirmed. Furthermore, the thermal properties and decomposition behavior of the sonocrystallized AP are analyzed, revealing improved exothermic characteristics. These results prove that cooling sonocrystallization is an efficient tool for producing AP particles and also holds the potential for preparing fine particles of other energetic materials.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 12","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861360","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Crystal Growth, Optical, Mechanical and Dielectric Analysis of Semiorganic Glycine Manganese Sulphate Single Crystal for Opto-Electronic Device Application 用于光电子器件应用的半有机硫酸甘氨酸锰单晶的晶体生长、光学、机械和介电分析
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-11-17 DOI: 10.1002/crat.202400173
P. Revathi, T. Balakrishnan, J. Thirupathy
{"title":"Crystal Growth, Optical, Mechanical and Dielectric Analysis of Semiorganic Glycine Manganese Sulphate Single Crystal for Opto-Electronic Device Application","authors":"P. Revathi,&nbsp;T. Balakrishnan,&nbsp;J. Thirupathy","doi":"10.1002/crat.202400173","DOIUrl":"https://doi.org/10.1002/crat.202400173","url":null,"abstract":"<p>Glycine manganese sulphate (GMS) crystals are produced by a slow evaporation technique at room temperature. This is confirmed that triclinic of the crystal lattice system by using single crystal X-ray diffraction analysis and to determine the lattice parameters of the synthesised crystals. Powder XRD is used to confirm the planar indexing and crystalline structure. The Fourier Transform Infrared (FT-IR) spectra are examined to verify that functional groups are present in the generated GMS crystals. By establishing a cut-off wavelength of 253 nm, spectra of visible, near-infrared, and Ultra Violet (UV) light from 200 to 1100 nm are analyzed. At frequencies ranging from 100 Hz to 8 MHz, the grown crystal's dielectric response is studied. Vickers microhardness tester is utilized to find out how strong the grown crystal is mechanically. Photoluminescence (PL) investigations often aim to detect crystal formation faults and contaminants. Etching analysis is used to find surface flaws and dislocations on the formed crystal's surface. The internal surface property of the produced crystal is investigated with scanning electron microscopy (SEM). The findings contradicted each other, suggesting that the created GMS crystal be used in opto-electronic device applications.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 12","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis, Structure, and Non-Linear Optical Properties of New Metal Semi-Organic Complex: 1,4-diazabicyclo[2.2.2]octane-1,4-diium tris(nitrato)-silver 新型金属半有机配合物:1,4-重氮双环[2.2.2]辛烷-1,4-二氮三(硝酸)银的合成、结构和非线性光学性质
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-11-14 DOI: 10.1002/crat.202400156
Arindam Roy, Souradeep Bakshi, Manohor Prasad Kintali, P. Srinivasan, Saikatendu Deb Roy
{"title":"Synthesis, Structure, and Non-Linear Optical Properties of New Metal Semi-Organic Complex: 1,4-diazabicyclo[2.2.2]octane-1,4-diium tris(nitrato)-silver","authors":"Arindam Roy,&nbsp;Souradeep Bakshi,&nbsp;Manohor Prasad Kintali,&nbsp;P. Srinivasan,&nbsp;Saikatendu Deb Roy","doi":"10.1002/crat.202400156","DOIUrl":"https://doi.org/10.1002/crat.202400156","url":null,"abstract":"<p>Optically transparent metal semi organic single crystal of 1,4-diazabicyclo[2.2.2]octane-1,4-diium tris(nitrato)-silver (DTNS) is synthesized using slow evaporation solution technique. This single crystal is grown with dimension up to <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>3</mn>\u0000 <mo>×</mo>\u0000 <mn>0.6</mn>\u0000 <mo>×</mo>\u0000 <mn>0.2</mn>\u0000 <mspace></mspace>\u0000 <mspace></mspace>\u0000 <msup>\u0000 <mi>cm</mi>\u0000 <mn>3</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$3 times 0.6 times 0.2 ,,{rm{cm^3}}$</annotation>\u0000 </semantics></math> using 1,4-diazabicyclo[2.2.2]octane (DABCO) as solute and water and methanol as solvent in the presence metal salt silver nitrate. Single crystal X-ray diffraction (XRD) study showed a trigonal structure with space group P3c1 and the sum formula <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <msub>\u0000 <mi>C</mi>\u0000 <mn>6</mn>\u0000 </msub>\u0000 <msub>\u0000 <mi>H</mi>\u0000 <mn>14</mn>\u0000 </msub>\u0000 <mi>A</mi>\u0000 <mi>g</mi>\u0000 <msub>\u0000 <mi>N</mi>\u0000 <mn>5</mn>\u0000 </msub>\u0000 <msub>\u0000 <mi>O</mi>\u0000 <mn>9</mn>\u0000 </msub>\u0000 </mrow>\u0000 <annotation>$C_6 H_{14} Ag N_5 O_9$</annotation>\u0000 </semantics></math>. The composition of metal Silver (Ag) in single crystal is confirmed through Energy Dispersive X-Ray Analysis. The confirmation of various functional groups in DTNS molecular structure is characterized by Fourier Transform Infrared Spectroscopy (FT-IR). UV–Visible absorption study showed the cut-off wavelength at 250 nm with transparency 350–700 nm and the bandgap is about 3.3 eV. The thermal stability and melting point temperature is analyzed by Thermogravimetry-Differential Scanning Calorimetry (TG/DSC). The third order Non Linear Optics (NLO) efficiency of the synthesized crystal is <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mo>×</mo>\u0000 <msup>\u0000 <mn>10</mn>\u0000 <mn>6</mn>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$2 times 10^6$</annotation>\u0000 </semantics></math> times greater than that of KDP. All of these analysis implies that DTNS crystal can be beneficial element for non-linear optical applications.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 12","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142861135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information: Crystal Research and Technology 11'2024 发行信息:晶体研究与技术 11'2024
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-11-11 DOI: 10.1002/crat.202470044
{"title":"Issue Information: Crystal Research and Technology 11'2024","authors":"","doi":"10.1002/crat.202470044","DOIUrl":"https://doi.org/10.1002/crat.202470044","url":null,"abstract":"","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 11","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/crat.202470044","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142664917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and Growth Mechanism of Pyramid-Shaped Cu2ZnSnS4 Monocrystal and the Simulation of Its Monograin Layer Solar Cells 锥形Cu2ZnSnS4单晶的制备、生长机理及其单晶层太阳能电池的模拟
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-11-09 DOI: 10.1002/crat.202400151
Wenfeng Fu, Xupeng Zhu, Jun Liao, Qiang Ru, Shuwen Xue, Jun Zhang
{"title":"Preparation and Growth Mechanism of Pyramid-Shaped Cu2ZnSnS4 Monocrystal and the Simulation of Its Monograin Layer Solar Cells","authors":"Wenfeng Fu,&nbsp;Xupeng Zhu,&nbsp;Jun Liao,&nbsp;Qiang Ru,&nbsp;Shuwen Xue,&nbsp;Jun Zhang","doi":"10.1002/crat.202400151","DOIUrl":"https://doi.org/10.1002/crat.202400151","url":null,"abstract":"<p>The Cu<sub>2</sub>ZnSnS<sub>4</sub>(CZTS) monocrystal as an important component of the optical absorption layer in monograin layer solar cells, has excellent crystallization characteristics and adjustable photogenerated carrier concentration. The shape of the CZTS monocrystal directly affects the utilization of incident light and the contact area during the preparation of the back electrode when they are densely packed to form a single-layer absorption layer. Herein, a kesterite-phase pyramid-shaped CZTS monocrystal prepared by the molten salt method is reported, which can improve the efficiency of incident light utilization and increase the contact area during back electrode preparation. The X-Ray diffraction, Raman spectroscopy, transmission electron microscopy, and scanning electron microscopy are used to characterize the crystallinity and crystal shape of pyramid-shaped CZTS monocrystal. Besides, Finite-Difference simulation calculation is employed to reveal the optical response and corresponding monograin layer solar cells performance of densely packed CZTS. The results show that the pyramid-shaped structure exhibited excellent incident light trapping ability, and the simulated device achieves a cell efficiency with above 13.6% after parameter optimization. The work provides a method for preparing pyramid-shaped CZTS monocrystal, and a new strategy to further improve the efficiency of CZTS-based monograin layer solar cells.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 12","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of PbMo0.3W0.7O4 Crystal: A Potential Material for Photocatalysis and Optoelectronic Applications PbMo0.3W0.7O4晶体的表征:一种潜在的光催化和光电子应用材料
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-11-09 DOI: 10.1002/crat.202400189
Mehmet Isik, Nizami Mamed Gasanly
{"title":"Characterization of PbMo0.3W0.7O4 Crystal: A Potential Material for Photocatalysis and Optoelectronic Applications","authors":"Mehmet Isik,&nbsp;Nizami Mamed Gasanly","doi":"10.1002/crat.202400189","DOIUrl":"https://doi.org/10.1002/crat.202400189","url":null,"abstract":"<p>PbMo<sub>0.3</sub>W<sub>0.7</sub>O<sub>4</sub> semiconductor crystal, which contains the balanced ratios of Mo and W, is grown for the first time by Czochralski method. The structural and optical properties of the crystal are investigated in detail in the present study. Structural analysis shows that crystal has tetragonal structure like PbMoO<sub>4</sub> and PbWO<sub>4</sub> compounds. The optical characteristics are studied by transmission, Raman, FTIR and photoluminescence methods. The bandgap energy is found to be 3.18 eV, and the positions of the conduction and valence bands are determined. The vibrational characteristics are studied by means of Raman and FTIR spectroscopy techniques. Photoluminescence spectrum presents three peaks around 486, 529, and 544 nm which fall into the green emission spectral range. Taking into account the properties of the compound, it is stated that PbMo<sub>0.3</sub>W<sub>0.7</sub>O<sub>4</sub> (or Pb(MoO<sub>4</sub>)<sub>0.3</sub>(WO<sub>4</sub>)<sub>0.7</sub>) has the potential to be used in water splitting applications and optoelectronic devices that emit green light.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 12","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the Effect of Cations on Morphology in the Preparation of Vaterite Calcium Carbonate from Dolomite 阳离子对白云石制备水晶石型碳酸钙形貌影响的研究
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-11-09 DOI: 10.1002/crat.202400161
Tianbo Fan, Xin'ai Zhang, Qiutong Li, Liqiang Jiao, Hongfan Guo, Xue Li
{"title":"Study on the Effect of Cations on Morphology in the Preparation of Vaterite Calcium Carbonate from Dolomite","authors":"Tianbo Fan,&nbsp;Xin'ai Zhang,&nbsp;Qiutong Li,&nbsp;Liqiang Jiao,&nbsp;Hongfan Guo,&nbsp;Xue Li","doi":"10.1002/crat.202400161","DOIUrl":"https://doi.org/10.1002/crat.202400161","url":null,"abstract":"<p>In this paper, the effect of trace components in dolomite on the morphology of vaterite calcium carbonate is studied in the CaCl<sub>2</sub>-NH<sub>3</sub>-CO<sub>2</sub> system, with a focus on the effect of cations (Mg<sup>2+</sup>, Fe<sup>3+</sup>, Si<sup>4+</sup>, and Al<sup>3+</sup>) in the solution. Ca<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>, Mg<sup>2+</sup>, Fe<sup>3+</sup>, Si<sup>4+</sup>, and Al<sup>3+</sup> in the digestion solution are proportionally prepared into a solution by analyzing the calcium rich digestion solution which is obtained by digesting dolomite with ammonium chloride solution. Under the optimal conditions, NH<sub>3</sub> is introduced at a rate of 0.5 L min<sup>−1</sup> for 1 h, CO<sub>2</sub> is introduced at a rate of 0.5 L min<sup>−1</sup> for 1 h and rotation speed of 500 r min<sup>−1</sup> to prepare the vaterite calcium carbonate. The results show that the addition of Mg<sup>2+</sup>, Fe<sup>3+</sup>, Si<sup>4+</sup>, and Al<sup>3+</sup> can promote the growth of vaterite calcium carbonate. Among them, adding Mg<sup>2+</sup> and Si<sup>4+</sup> can promote the dispersion of vaterite, Fe<sup>3+</sup> and Al<sup>3+</sup> can cause agglomeration of vaterite. Material Studio software is used to predict the crystal morphology of vaterite calcium carbonate under ideal conditions, and the calculation results are basically consistent with the experimental results.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 12","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142860578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ca(Mo,W)O4 Solid Solutions Formation in CaMoO4-CaWO4 System CaMoO4-CaWO4 体系中 Ca(Mo,W)O4 固溶体的形成
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-10-25 DOI: 10.1002/crat.202400127
D.M. Khramtsova, A.B. Kuznetsov, V.D. Grigorieva, A.A. Ryadun, A.E. Musikhin, K.A. Kokh
{"title":"Ca(Mo,W)O4 Solid Solutions Formation in CaMoO4-CaWO4 System","authors":"D.M. Khramtsova,&nbsp;A.B. Kuznetsov,&nbsp;V.D. Grigorieva,&nbsp;A.A. Ryadun,&nbsp;A.E. Musikhin,&nbsp;K.A. Kokh","doi":"10.1002/crat.202400127","DOIUrl":"https://doi.org/10.1002/crat.202400127","url":null,"abstract":"<p>The formation of solid solutions in the CaMoO<sub>4</sub>-CaWO<sub>4</sub> binary system is investigated by X-ray diffraction, Raman spectroscopy, and scanning electron microscopy methods. The intermixtures of CaMoO<sub>4</sub> and CaWO<sub>4</sub> components are sintered in 600—1200 °C temperature range (in 100 °C increments). The solidus of the CaMo<sub>x</sub>W<sub>(1-x)</sub>O<sub>4</sub> system is studied by the differential scanning calorimetry method in the x  =  0.3 … 1.0 range. CaMoO<sub>4</sub>-CaWO<sub>4</sub> phase diagram is constructed up to 1550 °C. The minimal sintering temperature in order to get CaMo<sub>x</sub>W<sub>(1-x)</sub>O<sub>4</sub> solid solution is shown to be 800 °C. Cathodoluminescence study of CaMo<sub>x</sub>W<sub>(1-x)</sub>O<sub>4</sub> compounds showed higher intensity of molybdate luminescence type.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"59 11","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142665147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信