Crystal Research and Technology最新文献

筛选
英文 中文
Issue Information: Crystal Research and Technology 10'2024 发行信息:晶体研究与技术 10'2024
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-10-09 DOI: 10.1002/crat.202470043
{"title":"Issue Information: Crystal Research and Technology 10'2024","authors":"","doi":"10.1002/crat.202470043","DOIUrl":"https://doi.org/10.1002/crat.202470043","url":null,"abstract":"","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/crat.202470043","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to First-Principles Calculations to Investigate the Ground State, Mechanical Stability, Electronic Structure, and Optical Properties of Tl2SnX3 (X = S, Se, Te) 修正第一性原理计算以研究 Tl2SnX3(X = S、Se、Te)的基态、机械稳定性、电子结构和光学特性
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-09-23 DOI: 10.1002/crat.202470042
{"title":"Correction to First-Principles Calculations to Investigate the Ground State, Mechanical Stability, Electronic Structure, and Optical Properties of Tl2SnX3 (X = S, Se, Te)","authors":"","doi":"10.1002/crat.202470042","DOIUrl":"https://doi.org/10.1002/crat.202470042","url":null,"abstract":"<p>[Hanen Alhussain, Hela Ferjani, Youssef Ben Smida; https://doi.org/10.1002/crat.202300340]</p><p>[An error in the spelling of an author's name in the article. The name in the published paper is [Hanen] and should be corrected to [Hanan].</p><p>We apologize for this error.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/crat.202470042","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435790","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphologically and Compositionally Controlled Cs2SbBr6 by Bi and Ag Substitution 通过铋和银取代实现形态和成分可控的 Cs2SbBr6
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-09-18 DOI: 10.1002/crat.202400055
Alexander Frebel, Songhak Yoon, Samuel Meles Neguse, Dennis Michael Jöckel, Marc Widenmeyer, Stefan G. Ebbinghaus, Benjamin Balke-Grünewald, Anke Weidenkaff
{"title":"Morphologically and Compositionally Controlled Cs2SbBr6 by Bi and Ag Substitution","authors":"Alexander Frebel,&nbsp;Songhak Yoon,&nbsp;Samuel Meles Neguse,&nbsp;Dennis Michael Jöckel,&nbsp;Marc Widenmeyer,&nbsp;Stefan G. Ebbinghaus,&nbsp;Benjamin Balke-Grünewald,&nbsp;Anke Weidenkaff","doi":"10.1002/crat.202400055","DOIUrl":"10.1002/crat.202400055","url":null,"abstract":"<p>Morphology-controlled Cs<sub>2</sub>SbBr<sub>6</sub> crystals are synthesized by Bi- and Ag-substitution of the precursor solution. X-ray diffraction (XRD) together with Raman spectroscopy confirms the lattice tilting and symmetry changes with the dominant appearance of higher index facets by Bi substitution. Ag substitution does not induce crystal symmetry changes in the Cs<sub>2</sub>BBr<sub>6</sub> (B = Sb or Bi) phase, but results in highly defective structures hindering the formation of a smooth surface during the crystal growth. Successful substitution of Bi and limited substitution of Ag into Cs<sub>2</sub>SbBr<sub>6</sub> is also confirmed by energy dispersive X-ray spectroscopy (EDX). This research provides design principles and practical examples of how to control the morphology of Cs<sub>2</sub>SbBr<sub>6</sub> crystals with structural defects and multiphase formation.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/crat.202400055","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Copper Intercalation Effect on Thermoelectric Performance of Pristine Tin Selenide 铜互钙对原始硒化锡热电性能的影响
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-09-18 DOI: 10.1002/crat.202400115
Satendrasinh Bharthaniya, Mahesh Chaudhari, Ajay Agarwal, Kailash Chaudhari, Sunil Chaki
{"title":"Copper Intercalation Effect on Thermoelectric Performance of Pristine Tin Selenide","authors":"Satendrasinh Bharthaniya,&nbsp;Mahesh Chaudhari,&nbsp;Ajay Agarwal,&nbsp;Kailash Chaudhari,&nbsp;Sunil Chaki","doi":"10.1002/crat.202400115","DOIUrl":"https://doi.org/10.1002/crat.202400115","url":null,"abstract":"<p>Pristine tin selenide (SnSe) and copper (Cu) doped SnSe single crystals are grown by direct vapour transport technique. The energy dispersive X-ray, X-ray diffraction and Raman spectroscopic analysis of grown crystals show preferred stoichiometry having a single phase othorhombic SnSe. The electrical conductivity of SnSe and Cu doped SnSe are 24.24 and 106.06 S m<sup>−1</sup> at 310 K respectively which increase as temperature increases. Carrier concentration of grown single crystals are evaluated by the Hall effect. Lattice thermal conductivity of pristine SnSe is 0.61 W mK<sup>−1</sup>, that decreased by copper doping to 0.44 W mK<sup>−1</sup> at 310 K and for both the crystals it shows decrement as temperature increases to 483 K. Seebeck coefficient of the grown SnSe and Cu doped SnSe are positive and obtained values are 536.44 and 492.90 µV K<sup>−1</sup> respectively at 310 K that confirm the p-type semiconducting nature. Power factor, Figure of merit and thermoelectric compatibility factor of grown pristine SnSe is 0.25 × 10<sup>8</sup> µV mK<sup>−2</sup>, 0.005 and 0.02 Volt<sup>−1</sup> respectively and shows improvement in Cu doped SnSe, i.e., 0.08 × 10<sup>8</sup> µV mK<sup>−2</sup>, 0.017 and 0.07 Volt<sup>−1</sup> respectively at 310 K. This shows Cu doping in SnSe makes it an effective thermoelectric device contender.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142435835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Impact of Melt Transparency on Li2MoO4 Single Crystal Growth by the Czochralski Technique 熔体透明度对利用佐赫拉尔斯基技术生长 Li2MoO4 单晶的影响
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-09-10 DOI: 10.1002/crat.202400095
Yahia Zakarya Bouzouaoui, Rayane Ayadi, Oumaima Brakni, Samir Zermout, Idir Lasloudji, Matias Velázquez
{"title":"The Impact of Melt Transparency on Li2MoO4 Single Crystal Growth by the Czochralski Technique","authors":"Yahia Zakarya Bouzouaoui,&nbsp;Rayane Ayadi,&nbsp;Oumaima Brakni,&nbsp;Samir Zermout,&nbsp;Idir Lasloudji,&nbsp;Matias Velázquez","doi":"10.1002/crat.202400095","DOIUrl":"10.1002/crat.202400095","url":null,"abstract":"<p>In this paper, it is found that taking a semitransparent melt, influences c–m interface shape, heat transfer, melt flow and von Mises thermal stress distributions, therefore the quality of the grown crystal. As a result, when absorption coefficients of both melt and crystal change from transparent to opaque case, the c–m interface convexity reduces from 12.5 to 5.8 mm, its shape becomes more convex toward the melt, and the maximum von Mises thermal stresses decreases from 69.55 to 13.8 MPa. For the second study, where the crystal absorption coefficient is fixed at <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>20</mn>\u0000 <mspace></mspace>\u0000 <msup>\u0000 <mi>m</mi>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$20 {{mathrm{m}}}^{ - 1}$</annotation>\u0000 </semantics></math>, the c–m interface convexity increases with the increase in melt absorption coefficient. The maximum and minimum von Mises stresses for the case <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mn>100</mn>\u0000 <mspace></mspace>\u0000 <msup>\u0000 <mi>m</mi>\u0000 <mrow>\u0000 <mo>−</mo>\u0000 <mn>1</mn>\u0000 </mrow>\u0000 </msup>\u0000 </mrow>\u0000 <annotation>$100 {{mathrm{m}}}^{ - 1}$</annotation>\u0000 </semantics></math> are low compared to other values; then the grown crystal has a good quality.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information: Crystal Research and Technology 9'2024 发行信息:晶体研究与技术 9'2024
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-09-09 DOI: 10.1002/crat.202470041
{"title":"Issue Information: Crystal Research and Technology 9'2024","authors":"","doi":"10.1002/crat.202470041","DOIUrl":"https://doi.org/10.1002/crat.202470041","url":null,"abstract":"","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/crat.202470041","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Morphology-Controlled Synthesis of Hierarchical Copper Hydroxyphosphate Microcrystals in Alkaline Buffer Solution and their Optical Properties 碱性缓冲溶液中分层羟基磷酸铜微晶的形态控制合成及其光学特性
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-09-08 DOI: 10.1002/crat.202400120
Yiyang Zhao, Hao Chen, Gaogao Li, Yonghui Shao, Xiaodi Liu
{"title":"Morphology-Controlled Synthesis of Hierarchical Copper Hydroxyphosphate Microcrystals in Alkaline Buffer Solution and their Optical Properties","authors":"Yiyang Zhao,&nbsp;Hao Chen,&nbsp;Gaogao Li,&nbsp;Yonghui Shao,&nbsp;Xiaodi Liu","doi":"10.1002/crat.202400120","DOIUrl":"10.1002/crat.202400120","url":null,"abstract":"<p>A series of copper hydroxyphosphate (Cu<sub>2</sub>(OH)PO<sub>4</sub>) microcrystals with different shapes, including straw sheaf-like microcrystals, microrods-assembled microflowers, four-edged arrow-like microcrystals, and four-pointed star-like dendrites, are prepared by a hydrothermal method in Na<sub>2</sub>HPO<sub>4</sub>-NaOH buffer solutions. The buffer solutions serve as both reactant and solvent. More importantly, the pH values of the alkaline buffer solutions significantly affect the morphologies of Cu<sub>2</sub>(OH)PO<sub>4</sub> microcrystals. Four samples have absorption bands in the near-ultraviolet, visible, and near-infrared regions; furthermore, four Cu<sub>2</sub>(OH)PO<sub>4</sub> microcrystals exhibit different band gap energies (3.06, 2.78, 2.68, and 2.39 eV) owing to their different structures. This strategy can be scaled up for the simple, green, and low-cost production of Cu<sub>2</sub>(OH)PO<sub>4</sub> microcrystals.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the Plastic Deformation Mechanism of Void-Containing Twin-Crystal Magnesium with Symmetric Tilt Grain Boundary Angles 具有对称倾斜晶界角的含空隙双晶镁的塑性变形机理研究
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-08-23 DOI: 10.1002/crat.202400119
Qin Li, Junping Yao, Zhichen Wu, Buwei Li, Guoxing Chen, Lanmin Zhou
{"title":"Study on the Plastic Deformation Mechanism of Void-Containing Twin-Crystal Magnesium with Symmetric Tilt Grain Boundary Angles","authors":"Qin Li,&nbsp;Junping Yao,&nbsp;Zhichen Wu,&nbsp;Buwei Li,&nbsp;Guoxing Chen,&nbsp;Lanmin Zhou","doi":"10.1002/crat.202400119","DOIUrl":"https://doi.org/10.1002/crat.202400119","url":null,"abstract":"<p>A twin-crystal magnesium (Mg) model with 9 different symmetric tilt grain boundary (STGB) angles (20°–80°) with preset nanohole defects is established by atomsk and lammps software. The mechanical behavior of grain boundary (GB) angles on twin-crystal Mg with cavity defects and its cavity evolution are simulated by the molecular dynamics method with embedded atomic potential, and the plastic deformation mechanism is revealed. The results show that the yield stress decreases with the increase of the STGB Angle during the stretching process. When the GB Angle increases from 20° to 80°, the yield stress decreases from 2.28 to 1.42 Gpa. This is because the larger the STGB Angle is, the larger the Schmidt factor is, and the easier it is to start dislocation slip during the stretching process. On the other hand, the larger the Angle of STGB, the more the number of atomic voids at the interface, and the more the number of dislocation nucleation points. The larger the Angle of STGB, the lower the strength of twinning Mg but the better the plasticity to avoid fracture. The plastic deformation mechanism mainly includes the nucleation of Shockley incomplete dislocation at STGBs, dislocation slip generates stacking faults (SFs), GB migration, and base plane dislocations.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revolutionizing Construction: Harnessing Phosphorus Tailings for Lightweight, High-Strength Wall Materials 建筑业的变革:利用磷尾矿制造轻质高强度墙体材料
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-08-23 DOI: 10.1002/crat.202400094
Haiyang Wang, Hao Zhang, Hong Cao, Jun Xue,  Arramel, Jing Zou, Jizhou Jiang
{"title":"Revolutionizing Construction: Harnessing Phosphorus Tailings for Lightweight, High-Strength Wall Materials","authors":"Haiyang Wang,&nbsp;Hao Zhang,&nbsp;Hong Cao,&nbsp;Jun Xue,&nbsp; Arramel,&nbsp;Jing Zou,&nbsp;Jizhou Jiang","doi":"10.1002/crat.202400094","DOIUrl":"https://doi.org/10.1002/crat.202400094","url":null,"abstract":"<p>The beneficiation of low-grade phosphate ore leads to the production of a substantial quantity of phosphate tailings, thereby not only occupying land but also endangering the environment and potentially posing safety concerns. In this work, extrusion molding, steam-curing, and calcined phosphate tailings are employed to fabricate lightweight wall materials with superior strength. It is found that the wall material has a special structure of interwoven needle-like crystals as a way to provide high flexural strength. The main composition of 34.94% phosphate tailings, 36.75% calcined phosphate tailings, 16.64% silica fume, 6.67% anhydrous magnesium sulfate is required to achieve an optimal maintenance process for 4 h of heat preservation at 120 °C saturated vapor pressure environment. The prepared wall materials yield a flexural strength of 24.9 MPa, compressive strength of 18.9 MPa, softening coefficient of 0.81, apparent density of 1.594 g cm<sup>−3</sup>, and thermal conductivity of 0.269 w/(m K), which meet the requirements of the Chinese standard “Lightweight strip board for building partition walls”. Moreover, the calculation revealed that phosphate tailings have a comprehensive utilization rate of 77.23%, effectively mitigating the issues arising from their accumulation and serving as an efficient means of utilizing solid waste derived from phosphate tailings.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142165728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High Broadband Optical Absorption and Bandstop Filter Characteristics of Pb/Nb2O5 Interfaces Pb/Nb2O5 界面的高宽带光吸收和带阻滤波器特性
IF 1.5 4区 材料科学
Crystal Research and Technology Pub Date : 2024-08-06 DOI: 10.1002/crat.202400136
Sabah. E. Algarni, Atef F. Qasrawi, Najla. M. Khusayfan
{"title":"High Broadband Optical Absorption and Bandstop Filter Characteristics of Pb/Nb2O5 Interfaces","authors":"Sabah. E. Algarni,&nbsp;Atef F. Qasrawi,&nbsp;Najla. M. Khusayfan","doi":"10.1002/crat.202400136","DOIUrl":"10.1002/crat.202400136","url":null,"abstract":"<p>In this study, semitransparent lead films serve as substrates for depositing niobium pentoxide thin films, forming versatile electro-optical devices. Using vacuum evaporation and ion sputtering techniques at ≈10<sup>−5</sup> mbar, stacked layers of crystalline Pb and amorphous Nb<sub>2</sub>O<sub>5</sub> are created. This process reduces free carrier absorption in Nb<sub>2</sub>O<sub>5</sub> and forms Urbach tail states with a width of 0.91 eV. Pb/Nb<sub>2</sub>O<sub>5</sub> thin films exhibit remarkable broadband absorption, exceeding 440% in the visible and 98% in the infrared. Moreover, Pb substrates induce a redshift in Nb<sub>2</sub>O<sub>5</sub>’s energy bandgap. Electrical analysis using impedance spectroscopy on Pb/Nb<sub>2</sub>O<sub>5</sub>/Ag structures reveals their series/parallel resonance and bandstop filter properties. Notably, the bandstop filters exhibit reflection coefficient minima at a notch frequency of 1.66 GHz, with a bandwidth of 280 MHz, return loss of 26 dB, and voltage standing wave ratio of 1.13. These findings underscore the device's potential for wide-ranging electro-optical applications across the electromagnetic spectrum.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":null,"pages":null},"PeriodicalIF":1.5,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信