Few-Layered MoS2 and MoOx Materials Using Wafers of Alternated MoO3 and S Foils as Catalysts: Chemical Vapor Deposition Experiments

IF 1.9 4区 材料科学 Q3 Chemistry
Omar F. De-León-Ibarra, Juan L. Fajardo-Díaz, Morinobu Endo, Eduardo Gracia-Espino, Florentino López-Urías, Emilio Muñoz-Sandoval
{"title":"Few-Layered MoS2 and MoOx Materials Using Wafers of Alternated MoO3 and S Foils as Catalysts: Chemical Vapor Deposition Experiments","authors":"Omar F. De-León-Ibarra,&nbsp;Juan L. Fajardo-Díaz,&nbsp;Morinobu Endo,&nbsp;Eduardo Gracia-Espino,&nbsp;Florentino López-Urías,&nbsp;Emilio Muñoz-Sandoval","doi":"10.1002/crat.70025","DOIUrl":null,"url":null,"abstract":"<p>A novel one-step chemical vapor deposition approach is introduced for synthesizing high-density vertical molybdenum disulfide (MoS<sub>2</sub>) nanoflakes and molybdenum dioxide (MoO<sub>2</sub>) structures using pelletized MoO<sub>3</sub>/S precursors and abrupt thermal cycling. Unlike conventional multi zone sulfurization methods, the process compacts alternating MoO<sub>3</sub>/S/MoO<sub>3</sub>/S/MoO<sub>3</sub> layers into 10-ton pressure pellets, ensuring uniform precursor distribution and phase selectivity. Rapid thermal cycling, with an abrupt transition from 25 to 750 °C, followed by rapid cooling after a 5-min deposition under an Ar/H<sub>2</sub> flow, critically influences the crystallization dynamics. A sulfur-to-MoO<sub>3</sub> molar ratio of 2:1 promotes vertical MoS<sub>2</sub> growth (≈100 flakesµm<sup>−2</sup>), whereas a 1.16:1 ratio induces MoO<sub>2</sub> formation with elongated hexagonal morphologies, sizes between (0.70–1.36 µm). This scalable synthesis method offers a reproducible and efficient alternative for nanomaterial fabrication, allowing the production of vertical MoS<sub>2</sub> flakes and enlarged MoO<sub>2</sub> for transfer onto various substrates, as well as uniform vertical structures directly deposited on the substrate. The findings offer key insights into precursor structuring and thermal modulation for the tailored synthesis of 2D materials with applications in catalysis, energy storage, and nanoelectronics.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"60 10","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/crat.70025","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

A novel one-step chemical vapor deposition approach is introduced for synthesizing high-density vertical molybdenum disulfide (MoS2) nanoflakes and molybdenum dioxide (MoO2) structures using pelletized MoO3/S precursors and abrupt thermal cycling. Unlike conventional multi zone sulfurization methods, the process compacts alternating MoO3/S/MoO3/S/MoO3 layers into 10-ton pressure pellets, ensuring uniform precursor distribution and phase selectivity. Rapid thermal cycling, with an abrupt transition from 25 to 750 °C, followed by rapid cooling after a 5-min deposition under an Ar/H2 flow, critically influences the crystallization dynamics. A sulfur-to-MoO3 molar ratio of 2:1 promotes vertical MoS2 growth (≈100 flakesµm−2), whereas a 1.16:1 ratio induces MoO2 formation with elongated hexagonal morphologies, sizes between (0.70–1.36 µm). This scalable synthesis method offers a reproducible and efficient alternative for nanomaterial fabrication, allowing the production of vertical MoS2 flakes and enlarged MoO2 for transfer onto various substrates, as well as uniform vertical structures directly deposited on the substrate. The findings offer key insights into precursor structuring and thermal modulation for the tailored synthesis of 2D materials with applications in catalysis, energy storage, and nanoelectronics.

Abstract Image

以MoO3和S箔片交替为催化剂的MoS2和MoOx材料:化学气相沉积实验
介绍了一种新的一步化学气相沉积方法,利用MoO3/S前驱体球团化和突然热循环合成高密度垂直二硫化钼(MoS2)纳米片和二硫化钼(MoO2)结构。与传统的多区硫化方法不同,该工艺将MoO3/S/MoO3/S/MoO3交替层压成10吨压力球团,确保前驱体均匀分布和相选择性。快速的热循环,从25°C突然转变到750°C,然后在Ar/H2流下沉积5分钟后快速冷却,严重影响结晶动力学。当硫与moo3的摩尔比为2:1时,可以促进MoS2垂直生长(≈100片μ m−2),而当硫与moo3的摩尔比为1.16:1时,则可以形成尺寸在0.70-1.36 μ m之间的细长六边形MoO2。这种可扩展的合成方法为纳米材料的制造提供了一种可重复和高效的替代方法,允许生产垂直的MoS2薄片和扩大的MoO2转移到各种衬底上,以及直接沉积在衬底上的均匀垂直结构。这些发现为二维材料的定制合成提供了前驱体结构和热调制的关键见解,并在催化、储能和纳米电子学方面有应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
121
审稿时长
1.9 months
期刊介绍: The journal Crystal Research and Technology is a pure online Journal (since 2012). Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of -crystal growth techniques and phenomena (including bulk growth, thin films) -modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals) -industrial crystallisation -application of crystals in materials science, electronics, data storage, and optics -experimental, simulation and theoretical studies of the structural properties of crystals -crystallographic computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信