Design and Characterization of Se/Nb2O5 Interfaces as High Infrared- Absorbers and High Frequency Band Filters

IF 1.5 4区 材料科学 Q3 Chemistry
A. F. Qasrawi, Rana B Daragme
{"title":"Design and Characterization of Se/Nb2O5 Interfaces as High Infrared- Absorbers and High Frequency Band Filters","authors":"A. F. Qasrawi,&nbsp;Rana B Daragme","doi":"10.1002/crat.202400194","DOIUrl":null,"url":null,"abstract":"<p>Herein a new class of optoelectronic devices beneficial for infrared light absorption and high-frequency application in the terahertz frequency domain are designed and fabricated. The devices are formed by coating a highly transparent thin layer of Nb<sub>2</sub>O<sub>5</sub> onto a selenium-thin film to form Se/Nb<sub>2</sub>O<sub>5</sub> (SNO) optical interfaces. Although coating of Nb<sub>2</sub>O<sub>5</sub> nanosheets decreased the crystallite sizes and increased the strain and defect concentration in the hexagonal structured Se films, they successfully increased the light absorption by ≈148% in the infrared range of light. A blueshift in the energy band gap of Se from 2.02 to 2.30 eV is observed. The coating of the Nb<sub>2</sub>O<sub>5</sub> onto Se suppressed the free carrier absorption in Se and Nb<sub>2</sub>O<sub>5</sub>. As dielectric active layers, SNO interfaces showed a major resonance dielectric peak centered at 1.67 eV. The optical conductivity and terahertz cutoff frequency analyses which are handled using the Drude-Lorentz approach revealed the highest drift mobility and free carrier concentration of 17.17 cm<sup>2</sup> Vs<sup>−1</sup> and 5.0 <span></span><math>\n <semantics>\n <mrow>\n <mo>×</mo>\n <mspace></mspace>\n <msup>\n <mn>10</mn>\n <mn>17</mn>\n </msup>\n </mrow>\n <annotation>$ \\times \\ {{10}^{17}}$</annotation>\n </semantics></math> cm<sup>−3</sup> when an oscillator of energy of 1.75 eV is activated. In addition, the terahertz cutoff frequency spectra which varied in the range of 4.0–131 THz showed the suitability of the SNO devices for terahertz technology and other optoelectronics.</p>","PeriodicalId":48935,"journal":{"name":"Crystal Research and Technology","volume":"60 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Research and Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/crat.202400194","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemistry","Score":null,"Total":0}
引用次数: 0

Abstract

Herein a new class of optoelectronic devices beneficial for infrared light absorption and high-frequency application in the terahertz frequency domain are designed and fabricated. The devices are formed by coating a highly transparent thin layer of Nb2O5 onto a selenium-thin film to form Se/Nb2O5 (SNO) optical interfaces. Although coating of Nb2O5 nanosheets decreased the crystallite sizes and increased the strain and defect concentration in the hexagonal structured Se films, they successfully increased the light absorption by ≈148% in the infrared range of light. A blueshift in the energy band gap of Se from 2.02 to 2.30 eV is observed. The coating of the Nb2O5 onto Se suppressed the free carrier absorption in Se and Nb2O5. As dielectric active layers, SNO interfaces showed a major resonance dielectric peak centered at 1.67 eV. The optical conductivity and terahertz cutoff frequency analyses which are handled using the Drude-Lorentz approach revealed the highest drift mobility and free carrier concentration of 17.17 cm2 Vs−1 and 5.0  × 10 17 $ \times \ {{10}^{17}}$ cm−3 when an oscillator of energy of 1.75 eV is activated. In addition, the terahertz cutoff frequency spectra which varied in the range of 4.0–131 THz showed the suitability of the SNO devices for terahertz technology and other optoelectronics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
6.70%
发文量
121
审稿时长
1.9 months
期刊介绍: The journal Crystal Research and Technology is a pure online Journal (since 2012). Crystal Research and Technology is an international journal examining all aspects of research within experimental, industrial, and theoretical crystallography. The journal covers the relevant aspects of -crystal growth techniques and phenomena (including bulk growth, thin films) -modern crystalline materials (e.g. smart materials, nanocrystals, quasicrystals, liquid crystals) -industrial crystallisation -application of crystals in materials science, electronics, data storage, and optics -experimental, simulation and theoretical studies of the structural properties of crystals -crystallographic computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信