Open Mathematics最新文献

筛选
英文 中文
Construction of 4 x 4 symmetric stochastic matrices with given spectra 构建具有给定频谱的 4 x 4 对称随机矩阵
IF 1.7 4区 数学
Open Mathematics Pub Date : 2024-03-16 DOI: 10.1515/math-2023-0176
Jaewon Jung, Donggyun Kim
{"title":"Construction of 4 x 4 symmetric stochastic matrices with given spectra","authors":"Jaewon Jung, Donggyun Kim","doi":"10.1515/math-2023-0176","DOIUrl":"https://doi.org/10.1515/math-2023-0176","url":null,"abstract":"The symmetric stochastic inverse eigenvalue problem (SSIEP) asks which lists of real numbers occur as the spectra of symmetric stochastic matrices. When the cardinality of a list is 4, Kaddoura and Mourad provided a sufficient condition for SSIEP by a mapping and convexity technique. They also conjectured that the sufficient condition is the necessary condition. This study presents the same sufficient condition for SSIEP, but we do it in terms of the list elements. In this way, we provide a different but more straightforward construction of symmetric stochastic matrices for SSIEP compared to those of Kaddoura and Mourad.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140147303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhanced Young-type inequalities utilizing Kantorovich approach for semidefinite matrices 利用半有限矩阵的康托洛维奇方法增强杨式不等式
IF 1.7 4区 数学
Open Mathematics Pub Date : 2024-03-14 DOI: 10.1515/math-2023-0185
Feras Bani-Ahmad, Mohammad Hussein Mohammad Rashid
{"title":"Enhanced Young-type inequalities utilizing Kantorovich approach for semidefinite matrices","authors":"Feras Bani-Ahmad, Mohammad Hussein Mohammad Rashid","doi":"10.1515/math-2023-0185","DOIUrl":"https://doi.org/10.1515/math-2023-0185","url":null,"abstract":"This article introduces new Young-type inequalities, leveraging the Kantorovich constant, by refining the original inequality. In addition, we present a range of norm-based inequalities applicable to positive semidefinite matrices, such as the Hilbert-Schmidt norm and the trace norm. The importance of these results lies in their dual significance: they hold inherent value on their own, and they also extend and build upon numerous established results within the existing literature.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140147297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combined system of additive functional equations in Banach algebras 巴拿赫代数中的加法函数方程组合系统
IF 1.7 4区 数学
Open Mathematics Pub Date : 2024-03-14 DOI: 10.1515/math-2023-0177
Siriluk Donganont, Choonkil Park
{"title":"Combined system of additive functional equations in Banach algebras","authors":"Siriluk Donganont, Choonkil Park","doi":"10.1515/math-2023-0177","DOIUrl":"https://doi.org/10.1515/math-2023-0177","url":null,"abstract":"In this study, we solve the system of additive functional equations: <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0177_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mfenced open=\"{\" close=\"\"> <m:mrow> <m:mtable displaystyle=\"true\"> <m:mtr> <m:mtd columnalign=\"left\"> <m:mi>h</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>+</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>h</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>+</m:mo> <m:mi>h</m:mi> <m:mrow> <m:mrow> <m:mo>(</m:mo> </m:mrow> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>+</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>+</m:mo> <m:mi>f</m:mi> <m:mrow> <m:mrow> <m:mo>(</m:mo> </m:mrow> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mn>2</m:mn> <m:mi>f</m:mi> <m:mfenced open=\"(\" close=\")\"> <m:mrow> <m:mfrac> <m:mrow> <m:mi>x</m:mi> <m:mo>+</m:mo> <m:mi>y</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> </m:mrow> </m:mfenced> <m:mo>=</m:mo> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>+</m:mo> <m:mi>g</m:mi> <m:mrow> <m:mrow> <m:mo>(</m:mo> </m:mrow> <m:mrow> <m:mi>y</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>left{begin{array}{l}hleft(x+y)=hleft(x)+h(y), gleft(x+y)=fleft(x)+f(y), 2fleft(frac{x+y}{2}right)=gleft(x)+g(y),end{array}right.</jats:tex-math> </jats:alternatives> </jats:disp-formula> and we investigate the stability of (homomorphism, derivation)-systems in Banach algebras.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140147290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Local and global solvability for the Boussinesq system in Besov spaces 贝索夫空间中布西尼斯克系统的局部和全局可解性
IF 1.7 4区 数学
Open Mathematics Pub Date : 2024-03-14 DOI: 10.1515/math-2023-0182
Shuokai Yan, Lu Wang, Qinghua Zhang
{"title":"Local and global solvability for the Boussinesq system in Besov spaces","authors":"Shuokai Yan, Lu Wang, Qinghua Zhang","doi":"10.1515/math-2023-0182","DOIUrl":"https://doi.org/10.1515/math-2023-0182","url":null,"abstract":"This article focuses on local and global existence and uniqueness for the strong solution to the Boussinesq system in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{mathbb{R}}}^{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:math> <jats:tex-math>nge 3</jats:tex-math> </jats:alternatives> </jats:inline-formula>) with full viscosity in Besov spaces. Under the hypotheses <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>1</m:mn> <m:mo>&lt;</m:mo> <m:mi>p</m:mi> <m:mo>&lt;</m:mo> <m:mi>∞</m:mi> </m:math> <jats:tex-math>1lt plt infty </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>−</m:mo> <m:mi>min</m:mi> <m:mrow> <m:mo>{</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>2</m:mn> <m:mo>−</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> </m:mrow> <m:mo>}</m:mo> </m:mrow> <m:mo>&lt;</m:mo> <m:mi>s</m:mi> <m:mo>≤</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> </m:math> <jats:tex-math>-min left{n/p,2-n/pright}lt sle n/p</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the initial condition <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>θ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:msubsup> <m:mrow> <m:mover accent=\"true\"> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:mrow> <m:mo>˙</m:mo> </m:mrow> </m:mover> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>s</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mo>×</m:mo> <m:msubsup> <m:mrow> <m:mover accent=\"true\"> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:mrow> <m:mo>˙</m:mo> </m:mrow> </m:mover> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>1</m:m","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140147288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The product of a quartic and a sextic number cannot be octic 四元数与六元数的乘积不可能是八元数
IF 1.7 4区 数学
Open Mathematics Pub Date : 2024-03-12 DOI: 10.1515/math-2023-0184
Artūras Dubickas, Lukas Maciulevičius
{"title":"The product of a quartic and a sextic number cannot be octic","authors":"Artūras Dubickas, Lukas Maciulevičius","doi":"10.1515/math-2023-0184","DOIUrl":"https://doi.org/10.1515/math-2023-0184","url":null,"abstract":"In this article, we prove that the product of two algebraic numbers of degrees 4 and 6 over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0184_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"double-struck\">Q</m:mi> </m:math> <jats:tex-math>{mathbb{Q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> cannot be of degree 8. This completes the classification of so-called product-feasible triplets <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0184_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>a</m:mi> <m:mo>,</m:mo> <m:mi>b</m:mi> <m:mo>,</m:mo> <m:mi>c</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">N</m:mi> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>left(a,b,c)in {{mathbb{N}}}^{3}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0184_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>a</m:mi> <m:mo>≤</m:mo> <m:mi>b</m:mi> <m:mo>≤</m:mo> <m:mi>c</m:mi> </m:math> <jats:tex-math>ale ble c</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0184_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>b</m:mi> <m:mo>≤</m:mo> <m:mn>7</m:mn> </m:math> <jats:tex-math>ble 7</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The triplet <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0184_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>a</m:mi> <m:mo>,</m:mo> <m:mi>b</m:mi> <m:mo>,</m:mo> <m:mi>c</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>left(a,b,c)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is called product-feasible if there are algebraic numbers <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0184_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:math> <jats:tex-math>alpha ,beta </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0184_eq_007.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>γ</m:mi> </m:math>","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140114889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Weighted Hermite-Hadamard-type inequalities without any symmetry condition on the weight function 加权赫米特-哈达马德式不等式,加权函数不带任何对称条件
IF 1.7 4区 数学
Open Mathematics Pub Date : 2024-03-12 DOI: 10.1515/math-2023-0178
Mohamed Jleli, Bessem Samet
{"title":"Weighted Hermite-Hadamard-type inequalities without any symmetry condition on the weight function","authors":"Mohamed Jleli, Bessem Samet","doi":"10.1515/math-2023-0178","DOIUrl":"https://doi.org/10.1515/math-2023-0178","url":null,"abstract":"We establish weighted Hermite-Hadamard-type inequalities for some classes of differentiable functions without assuming any symmetry property on the weight function. Next, we apply our obtained results to the approximation of some classes of weighted integrals.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140114987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On certain functional equation related to derivations 论某些与导数有关的函数方程
IF 1.7 4区 数学
Open Mathematics Pub Date : 2024-02-09 DOI: 10.1515/math-2023-0166
Benjamin Marcen, Joso Vukman
{"title":"On certain functional equation related to derivations","authors":"Benjamin Marcen, Joso Vukman","doi":"10.1515/math-2023-0166","DOIUrl":"https://doi.org/10.1515/math-2023-0166","url":null,"abstract":"In this article, we prove the following result. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:math> <jats:tex-math>nge 3</jats:tex-math> </jats:alternatives> </jats:inline-formula> be some fixed integer and let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>R</m:mi> </m:math> <jats:tex-math>R</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a prime ring with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">char</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>R</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≠</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>!</m:mo> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>{rm{char}}left(R)ne left(n+1)&amp;#x0021;{2}^{n-2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Suppose there exists an additive mapping <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>D</m:mi> <m:mo>:</m:mo> <m:mi>R</m:mi> <m:mo>→</m:mo> <m:mi>R</m:mi> </m:math> <jats:tex-math>D:Rto R</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfying the relation <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mrow> <m:mtable displaystyle=\"true\" columnspacing=\"0.33em\"> <m:mtr> <m:mtd columnalign=\"right\"> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"center\"> <m:mo>=</m:mo> </m:mtd> <m:mtd columnalign=\"left\"> <m:mfenced open=\"(\" close=\")\"> <m:mrow> <m:munderover> <m:mrow> <m:mstyle displaystyle=\"true\"> <m:mo>∑</m:mo> </m:mstyle> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:munderover> <m:mfenced open=\"(\" close=\")\"> <m:mfrac linethickness=\"0.0pt\"> <m:mrow> <m:mi>n</m:mi> <m","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139758620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the maximum atom-bond sum-connectivity index of graphs 论图形的最大原子键和连接指数
IF 1.7 4区 数学
Open Mathematics Pub Date : 2024-02-09 DOI: 10.1515/math-2023-0179
Tariq Alraqad, Hicham Saber, Akbar Ali, Abeer M. Albalahi
{"title":"On the maximum atom-bond sum-connectivity index of graphs","authors":"Tariq Alraqad, Hicham Saber, Akbar Ali, Abeer M. Albalahi","doi":"10.1515/math-2023-0179","DOIUrl":"https://doi.org/10.1515/math-2023-0179","url":null,"abstract":"The atom-bond sum-connectivity (ABS) index of a graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0179_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula> with edges <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0179_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo form=\"prefix\">,</m:mo> <m:mrow> <m:mo>…</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mi>m</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{e}_{1},ldots ,{e}_{m}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the sum of the numbers <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0179_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msqrt> <m:mrow> <m:mn>1</m:mn> <m:mo>−</m:mo> <m:mn>2</m:mn> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>d</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> </m:mrow> </m:msqrt> </m:math> <jats:tex-math>sqrt{1-2{left({d}_{{e}_{i}}+2)}^{-1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0179_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>i</m:mi> <m:mo>≤</m:mo> <m:mi>m</m:mi> </m:math> <jats:tex-math>1le ile m</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0179_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>d</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> </m:mrow> </m:msub> </m:math> <jats:tex-math>{d}_{{e}_{i}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the number of edges adjacent to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0179_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{e}_{i}</jats:tex-math> </jats:alter","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139758563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An application of Hayashi's inequality in numerical integration 林不等式在数值积分中的应用
IF 1.7 4区 数学
Open Mathematics Pub Date : 2024-01-12 DOI: 10.1515/math-2023-0162
Ahmed Salem Heilat, Ahmad Qazza, Raed Hatamleh, Rania Saadeh, Mohammad W. Alomari
{"title":"An application of Hayashi's inequality in numerical integration","authors":"Ahmed Salem Heilat, Ahmad Qazza, Raed Hatamleh, Rania Saadeh, Mohammad W. Alomari","doi":"10.1515/math-2023-0162","DOIUrl":"https://doi.org/10.1515/math-2023-0162","url":null,"abstract":"This study systematically develops error estimates tailored to a specific set of general quadrature rules that exclusively incorporate first derivatives. Moreover, it introduces refined versions of select generalized Ostrowski’s type inequalities, enhancing their applicability. Through the skillful application of Hayashi’s celebrated inequality to specific functions, the provided proofs underpin these advancements. Notably, this approach extends its utility to approximate integrals of real functions with bounded first derivatives. Remarkably, it employs Newton-Cotes and Gauss-Legendre quadrature rules, bypassing the need for stringent requirements on higher-order derivatives.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139462653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uniqueness of exponential polynomials 指数多项式的唯一性
IF 1.7 4区 数学
Open Mathematics Pub Date : 2024-01-10 DOI: 10.1515/math-2023-0173
Ge Wang, Zhiying He, Mingliang Fang
{"title":"Uniqueness of exponential polynomials","authors":"Ge Wang, Zhiying He, Mingliang Fang","doi":"10.1515/math-2023-0173","DOIUrl":"https://doi.org/10.1515/math-2023-0173","url":null,"abstract":"In this article, we study the uniqueness of exponential polynomials and mainly prove: Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>n</m:mi> </m:math> <jats:tex-math>n</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a positive integer, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mspace width=\"0.33em\" /> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mo>…</m:mo> <m:mo>,</m:mo> <m:mi>n</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{p}_{i}left(z)hspace{0.33em}left(i=1,2,ldots ,n)</jats:tex-math> </jats:alternatives> </jats:inline-formula> be nonzero polynomials, and let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>c</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mo>≠</m:mo> <m:mn>0</m:mn> <m:mspace width=\"0.33em\" /> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mo>…</m:mo> <m:mo>,</m:mo> <m:mi>n</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{c}_{i}ne 0hspace{0.33em}left(i=1,2,ldots ,n)</jats:tex-math> </jats:alternatives> </jats:inline-formula> be distinct finite complex numbers. Suppose that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>fleft(z)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is an entire function, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>c</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow>","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139420926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信