Open MathematicsPub Date : 2023-08-11DOI: 10.1142/s2811007223500086
Rajat Kaushik, Sandip Banerjee
{"title":"Predator-prey ecological system with group defense and anti-predator traits of the preys: Synergies between two important ecological actions","authors":"Rajat Kaushik, Sandip Banerjee","doi":"10.1142/s2811007223500086","DOIUrl":"https://doi.org/10.1142/s2811007223500086","url":null,"abstract":"","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"41 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81412238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Open MathematicsPub Date : 2023-07-28DOI: 10.1142/s2811007223500062
Pinghua Yang, Rongling Yang
{"title":"The explicit solution of a class of a higher order impulsive fractional differential equation involving Hadamard fractional derivative","authors":"Pinghua Yang, Rongling Yang","doi":"10.1142/s2811007223500062","DOIUrl":"https://doi.org/10.1142/s2811007223500062","url":null,"abstract":"","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"8 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89835659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Open MathematicsPub Date : 2023-06-01Epub Date: 2023-04-21DOI: 10.1097/JTE.0000000000000282
Richard C Armitage, Eric Williamson
{"title":"The Impact of Industrial Action on Physical Therapy Education in the United Kingdom.","authors":"Richard C Armitage, Eric Williamson","doi":"10.1097/JTE.0000000000000282","DOIUrl":"10.1097/JTE.0000000000000282","url":null,"abstract":"","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"18 1","pages":"85-86"},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"61625351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Open MathematicsPub Date : 2023-05-26DOI: 10.1142/s2811007223500037
Samara Fatima, Naseem Abbas, M. Munawar, S. M. Eldin
{"title":"Ion-acoustic wave dynamics and sensitivity study in a magnetized Auroral phase plasma","authors":"Samara Fatima, Naseem Abbas, M. Munawar, S. M. Eldin","doi":"10.1142/s2811007223500037","DOIUrl":"https://doi.org/10.1142/s2811007223500037","url":null,"abstract":"","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"15 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87415706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Open MathematicsPub Date : 2023-02-10DOI: 10.1142/s2811007223500013
Ying Song
{"title":"Global existence and decay rates of solutions for Vlasov-Navier-Stokes-Fokker-Planck equations with magnetic field","authors":"Ying Song","doi":"10.1142/s2811007223500013","DOIUrl":"https://doi.org/10.1142/s2811007223500013","url":null,"abstract":"","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"22 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89876605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Geometric classifications of <i>k</i>-almost Ricci solitons admitting paracontact metrices","authors":"Yanlin Li, Dhriti Sundar Patra, Nadia Alluhaibi, Fatemah Mofarreh, Akram Ali","doi":"10.1515/math-2022-0610","DOIUrl":"https://doi.org/10.1515/math-2022-0610","url":null,"abstract":"Abstract The prime objective of the approach is to give geometric classifications of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> </m:math> k -almost Ricci solitons associated with paracontact manifolds. Let <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>M</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> <m:mi>n</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>φ</m:mi> <m:mo>,</m:mo> <m:mi>ξ</m:mi> <m:mo>,</m:mo> <m:mi>η</m:mi> <m:mo>,</m:mo> <m:mi>g</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> {M}^{2n+1}left(varphi ,xi ,eta ,g) be a paracontact metric manifold, and if a <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>K</m:mi> </m:math> K -paracontact metric <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>g</m:mi> </m:math> g represents a <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> </m:math> k -almost Ricci soliton <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>g</m:mi> <m:mo>,</m:mo> <m:mi>V</m:mi> <m:mo>,</m:mo> <m:mi>k</m:mi> <m:mo>,</m:mo> <m:mi>λ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> left(g,V,k,lambda ) and the potential vector field <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>V</m:mi> </m:math> V is Jacobi field along the Reeb vector field <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ξ</m:mi> </m:math> xi , then either <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mi>λ</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> <m:mi>n</m:mi> </m:math> k=lambda -2n , or <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>g</m:mi> </m:math> g is a <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> </m:math> k -Ricci soliton. Next, we consider <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>K</m:mi> </m:math> K -paracontact manifold as a <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> </m:math> k -almost Ricci soliton with the potential vector field <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>V</m:mi> </m:math> V is infinitesimal paracontact transformation or collinear with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ξ</m:mi> </m:math> xi . We have proved that if a paracontact metric as a <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> </m:math> k -almost Ricci soliton associated with the non-zero potential vector field <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>V</m:mi> </m:math> V is collinear with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ξ</m:mi> </m:math> xi and the Ricci operator <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>Q</m:mi> </m:math> Q commutes with paracontact structure <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>φ</m:mi> </m:math> varphi , then it is Einstein of constant scalar curvature equals to","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"235 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136092710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Open MathematicsPub Date : 2023-01-01DOI: 10.1515/math-2022-0579
K. Dung, P. T. Thuy
{"title":"Commutators of Hardy-Littlewood operators on p-adic function spaces with variable exponents","authors":"K. Dung, P. T. Thuy","doi":"10.1515/math-2022-0579","DOIUrl":"https://doi.org/10.1515/math-2022-0579","url":null,"abstract":"Abstract In this article, we obtain some sufficient conditions for the boundedness of commutators of p p -adic Hardy-Littlewood operators with symbols in central bounded mean oscillation space and Lipschitz space on the p p -adic function spaces with variable exponents such as the p p -adic local central Morrey, p p -adic Morrey-Herz, and p p -adic local block spaces with variable exponents.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49274183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Open MathematicsPub Date : 2023-01-01DOI: 10.1142/s2811007223500049
S. Zawka, Temesgen T. Melese
{"title":"Dynamics and optimal harvesting of prey–predator in a polluted environment in the presence of scavenger and pollution control","authors":"S. Zawka, Temesgen T. Melese","doi":"10.1142/s2811007223500049","DOIUrl":"https://doi.org/10.1142/s2811007223500049","url":null,"abstract":"This paper is concerned with the dynamics and optimal harvesting of a prey–predator system in a polluted environment in the presence of scavengers and pollution control. Toxicants, released from external sources and the dead bodies of prey and predators, pollute the environment, which affects the growth of both prey and predators, resulting in a decline in the economic revenue from harvest. We assume that scavengers reduce pollution by consuming dead bodies. Further, we consider pollution reduction through depollution efforts as an alternative to enhancing revenue. We propose and analyze a prey–predator–pollutant model and study the optimal harvesting problem. We investigate the persistence of the ecosystem, and we solve the optimal harvest problem using Pontryagin’s maximum principle. The results indicate that uncontrolled prey harvesting and a high rate of pollution drive the system toward the extinction of both species. A moderate amount of pollution and the reasonable harvest efforts allow the system to persist. The optimal harvest strategy highlights that investing in pollution reduction enhances the persistence of the system as well as economic revenue. Numerical examples demonstrate the significant outcomes of the study.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"3 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72681321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}