{"title":"Spin(8,C)-Higgs pairs over a compact Riemann surface","authors":"Álvaro Antón-Sancho","doi":"10.1515/math-2023-0153","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a compact Riemann surface of genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>g</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:math> <jats:tex-math>g\\ge 2</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a semisimple complex Lie group and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ρ</m:mi> <m:mo>:</m:mo> <m:mi>G</m:mi> <m:mo>→</m:mo> <m:mi mathvariant=\"normal\">GL</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\rho :G\\to {\\rm{GL}}\\left(V)</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a complex representation of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Given a principal <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula>-bundle <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_007.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>E</m:mi> </m:math> <jats:tex-math>E</jats:tex-math> </jats:alternatives> </jats:inline-formula> over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_008.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula>, a vector bundle <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_009.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>E</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>E\\left(V)</jats:tex-math> </jats:alternatives> </jats:inline-formula> whose typical fiber is a copy of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_010.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>V</m:mi> </m:math> <jats:tex-math>V</jats:tex-math> </jats:alternatives> </jats:inline-formula> is induced. A <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_011.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>G</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(G,\\rho )</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Higgs pair is a pair <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_012.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>E</m:mi> <m:mo>,</m:mo> <m:mi>φ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(E,\\varphi )</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_013.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>E</m:mi> </m:math> <jats:tex-math>E</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a principal <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_014.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula>-bundle over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_015.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_016.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>φ</m:mi> </m:math> <jats:tex-math>\\varphi </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a holomorphic global section of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_017.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>E</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>⊗</m:mo> <m:mi>L</m:mi> </m:math> <jats:tex-math>E\\left(V)\\otimes L</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_018.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>L</m:mi> </m:math> <jats:tex-math>L</jats:tex-math> </jats:alternatives> </jats:inline-formula> being a fixed line bundle over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_019.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this work, Higgs pairs of this type are considered for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_020.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> <m:mo>=</m:mo> <m:mi mathvariant=\"normal\">Spin</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>8</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"double-struck\">C</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>G={\\rm{Spin}}\\left(8,{\\mathbb{C}})</jats:tex-math> </jats:alternatives> </jats:inline-formula> and the three irreducible eight-dimensional complex representations which <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_021.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Spin</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>8</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"double-struck\">C</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{\\rm{Spin}}\\left(8,{\\mathbb{C}})</jats:tex-math> </jats:alternatives> </jats:inline-formula> admits. In particular, the reduced notions of stability, semistability, and polystability for these specific Higgs pairs are given, and it is proved that the corresponding moduli spaces are isomorphic, and a precise expression for the stable and not simple Higgs pairs associated with one of the three announced representations of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_022.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Spin</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>8</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"double-struck\">C</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{\\rm{Spin}}\\left(8,{\\mathbb{C}})</jats:tex-math> </jats:alternatives> </jats:inline-formula> is described.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"24 11","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0153","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let XX be a compact Riemann surface of genus g≥2g\ge 2, GG be a semisimple complex Lie group and ρ:G→GL(V)\rho :G\to {\rm{GL}}\left(V) be a complex representation of GG. Given a principal GG-bundle EE over XX, a vector bundle E(V)E\left(V) whose typical fiber is a copy of VV is induced. A (G,ρ)\left(G,\rho )-Higgs pair is a pair (E,φ)\left(E,\varphi ), where EE is a principal GG-bundle over XX and φ\varphi is a holomorphic global section of E(V)⊗LE\left(V)\otimes L, LL being a fixed line bundle over XX. In this work, Higgs pairs of this type are considered for G=Spin(8,C)G={\rm{Spin}}\left(8,{\mathbb{C}}) and the three irreducible eight-dimensional complex representations which Spin(8,C){\rm{Spin}}\left(8,{\mathbb{C}}) admits. In particular, the reduced notions of stability, semistability, and polystability for these specific Higgs pairs are given, and it is proved that the corresponding moduli spaces are isomorphic, and a precise expression for the stable and not simple Higgs pairs associated with one of the three announced representations of Spin(8,C){\rm{Spin}}\left(8,{\mathbb{C}}) is described.
期刊介绍:
Open Mathematics - formerly Central European Journal of Mathematics
Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.
Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.
Aims and Scope
The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes: