Spin(8,C)-Higgs pairs over a compact Riemann surface

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Álvaro Antón-Sancho
{"title":"Spin(8,C)-Higgs pairs over a compact Riemann surface","authors":"Álvaro Antón-Sancho","doi":"10.1515/math-2023-0153","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a compact Riemann surface of genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>g</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:math> <jats:tex-math>g\\ge 2</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a semisimple complex Lie group and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ρ</m:mi> <m:mo>:</m:mo> <m:mi>G</m:mi> <m:mo>→</m:mo> <m:mi mathvariant=\"normal\">GL</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\rho :G\\to {\\rm{GL}}\\left(V)</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a complex representation of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Given a principal <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula>-bundle <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_007.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>E</m:mi> </m:math> <jats:tex-math>E</jats:tex-math> </jats:alternatives> </jats:inline-formula> over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_008.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula>, a vector bundle <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_009.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>E</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>E\\left(V)</jats:tex-math> </jats:alternatives> </jats:inline-formula> whose typical fiber is a copy of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_010.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>V</m:mi> </m:math> <jats:tex-math>V</jats:tex-math> </jats:alternatives> </jats:inline-formula> is induced. A <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_011.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>G</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(G,\\rho )</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Higgs pair is a pair <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_012.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>E</m:mi> <m:mo>,</m:mo> <m:mi>φ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(E,\\varphi )</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_013.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>E</m:mi> </m:math> <jats:tex-math>E</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a principal <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_014.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula>-bundle over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_015.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_016.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>φ</m:mi> </m:math> <jats:tex-math>\\varphi </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a holomorphic global section of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_017.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>E</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>⊗</m:mo> <m:mi>L</m:mi> </m:math> <jats:tex-math>E\\left(V)\\otimes L</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_018.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>L</m:mi> </m:math> <jats:tex-math>L</jats:tex-math> </jats:alternatives> </jats:inline-formula> being a fixed line bundle over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_019.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this work, Higgs pairs of this type are considered for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_020.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> <m:mo>=</m:mo> <m:mi mathvariant=\"normal\">Spin</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>8</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"double-struck\">C</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>G={\\rm{Spin}}\\left(8,{\\mathbb{C}})</jats:tex-math> </jats:alternatives> </jats:inline-formula> and the three irreducible eight-dimensional complex representations which <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_021.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Spin</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>8</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"double-struck\">C</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{\\rm{Spin}}\\left(8,{\\mathbb{C}})</jats:tex-math> </jats:alternatives> </jats:inline-formula> admits. In particular, the reduced notions of stability, semistability, and polystability for these specific Higgs pairs are given, and it is proved that the corresponding moduli spaces are isomorphic, and a precise expression for the stable and not simple Higgs pairs associated with one of the three announced representations of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_022.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Spin</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>8</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"double-struck\">C</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{\\rm{Spin}}\\left(8,{\\mathbb{C}})</jats:tex-math> </jats:alternatives> </jats:inline-formula> is described.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0153","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Let X X be a compact Riemann surface of genus g 2 g\ge 2 , G G be a semisimple complex Lie group and ρ : G GL ( V ) \rho :G\to {\rm{GL}}\left(V) be a complex representation of G G . Given a principal G G -bundle E E over X X , a vector bundle E ( V ) E\left(V) whose typical fiber is a copy of V V is induced. A ( G , ρ ) \left(G,\rho ) -Higgs pair is a pair ( E , φ ) \left(E,\varphi ) , where E E is a principal G G -bundle over X X and φ \varphi is a holomorphic global section of E ( V ) L E\left(V)\otimes L , L L being a fixed line bundle over X X . In this work, Higgs pairs of this type are considered for G = Spin ( 8 , C ) G={\rm{Spin}}\left(8,{\mathbb{C}}) and the three irreducible eight-dimensional complex representations which Spin ( 8 , C ) {\rm{Spin}}\left(8,{\mathbb{C}}) admits. In particular, the reduced notions of stability, semistability, and polystability for these specific Higgs pairs are given, and it is proved that the corresponding moduli spaces are isomorphic, and a precise expression for the stable and not simple Higgs pairs associated with one of the three announced representations of Spin ( 8 , C ) {\rm{Spin}}\left(8,{\mathbb{C}}) is described.
紧致黎曼表面上的自旋(8,C)-希格斯对
设X X是g≥2g的紧致黎曼曲面\ge 2, g g是半简单复李群,ρ: g→GL (V) \rho: g \to{\rm{GL}}\left (V)是g g的复表示。给定一个主G G -束E E / X X,诱导出一个矢量束E (V) E \left (V),其典型纤维是V V的复制品。A (G, ρ) \left (G, \rho) -希格斯对是一对(E, φ) \left (E, \varphi),其中E E是X X上的一个主G G -束,φ \varphi是E (V)⊗L E \left (V) \otimes L的全纯全局截面,L L是X X上的一个固定线束。在这项工作中,考虑了G= Spin (8, C) G= {\rm{Spin}}\left (8, {\mathbb{C}})和Spin (8, C) {\rm{Spin}}\left (8, {\mathbb{C}})承认的三种不可约的八维复表示的这种希格斯对。特别地,给出了这些特定希格斯对的稳定性、半稳定性和多稳定性的简化概念,并证明了相应的模空间是同构的,并描述了与自旋(8,C) {\rm{Spin}}\left (8, {\mathbb{C}})的三种表述之一相关的稳定和非简单希格斯对的精确表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信