{"title":"Spin(8,C)-Higgs pairs over a compact Riemann surface","authors":"Álvaro Antón-Sancho","doi":"10.1515/math-2023-0153","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a compact Riemann surface of genus <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>g</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:math> <jats:tex-math>g\\ge 2</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a semisimple complex Lie group and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ρ</m:mi> <m:mo>:</m:mo> <m:mi>G</m:mi> <m:mo>→</m:mo> <m:mi mathvariant=\"normal\">GL</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\rho :G\\to {\\rm{GL}}\\left(V)</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a complex representation of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Given a principal <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula>-bundle <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_007.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>E</m:mi> </m:math> <jats:tex-math>E</jats:tex-math> </jats:alternatives> </jats:inline-formula> over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_008.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula>, a vector bundle <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_009.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>E</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>E\\left(V)</jats:tex-math> </jats:alternatives> </jats:inline-formula> whose typical fiber is a copy of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_010.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>V</m:mi> </m:math> <jats:tex-math>V</jats:tex-math> </jats:alternatives> </jats:inline-formula> is induced. A <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_011.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>G</m:mi> <m:mo>,</m:mo> <m:mi>ρ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(G,\\rho )</jats:tex-math> </jats:alternatives> </jats:inline-formula>-Higgs pair is a pair <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_012.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>E</m:mi> <m:mo>,</m:mo> <m:mi>φ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(E,\\varphi )</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_013.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>E</m:mi> </m:math> <jats:tex-math>E</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a principal <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_014.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula>-bundle over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_015.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_016.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>φ</m:mi> </m:math> <jats:tex-math>\\varphi </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a holomorphic global section of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_017.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>E</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>V</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>⊗</m:mo> <m:mi>L</m:mi> </m:math> <jats:tex-math>E\\left(V)\\otimes L</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_018.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>L</m:mi> </m:math> <jats:tex-math>L</jats:tex-math> </jats:alternatives> </jats:inline-formula> being a fixed line bundle over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_019.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this work, Higgs pairs of this type are considered for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_020.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> <m:mo>=</m:mo> <m:mi mathvariant=\"normal\">Spin</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>8</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"double-struck\">C</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>G={\\rm{Spin}}\\left(8,{\\mathbb{C}})</jats:tex-math> </jats:alternatives> </jats:inline-formula> and the three irreducible eight-dimensional complex representations which <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_021.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Spin</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>8</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"double-struck\">C</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{\\rm{Spin}}\\left(8,{\\mathbb{C}})</jats:tex-math> </jats:alternatives> </jats:inline-formula> admits. In particular, the reduced notions of stability, semistability, and polystability for these specific Higgs pairs are given, and it is proved that the corresponding moduli spaces are isomorphic, and a precise expression for the stable and not simple Higgs pairs associated with one of the three announced representations of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0153_eq_022.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">Spin</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>8</m:mn> <m:mo>,</m:mo> <m:mi mathvariant=\"double-struck\">C</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{\\rm{Spin}}\\left(8,{\\mathbb{C}})</jats:tex-math> </jats:alternatives> </jats:inline-formula> is described.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0153","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Let XX be a compact Riemann surface of genus g≥2g\ge 2, GG be a semisimple complex Lie group and ρ:G→GL(V)\rho :G\to {\rm{GL}}\left(V) be a complex representation of GG. Given a principal GG-bundle EE over XX, a vector bundle E(V)E\left(V) whose typical fiber is a copy of VV is induced. A (G,ρ)\left(G,\rho )-Higgs pair is a pair (E,φ)\left(E,\varphi ), where EE is a principal GG-bundle over XX and φ\varphi is a holomorphic global section of E(V)⊗LE\left(V)\otimes L, LL being a fixed line bundle over XX. In this work, Higgs pairs of this type are considered for G=Spin(8,C)G={\rm{Spin}}\left(8,{\mathbb{C}}) and the three irreducible eight-dimensional complex representations which Spin(8,C){\rm{Spin}}\left(8,{\mathbb{C}}) admits. In particular, the reduced notions of stability, semistability, and polystability for these specific Higgs pairs are given, and it is proved that the corresponding moduli spaces are isomorphic, and a precise expression for the stable and not simple Higgs pairs associated with one of the three announced representations of Spin(8,C){\rm{Spin}}\left(8,{\mathbb{C}}) is described.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.