{"title":"允许副接触度量的k-概Ricci孤子的几何分类","authors":"Yanlin Li, Dhriti Sundar Patra, Nadia Alluhaibi, Fatemah Mofarreh, Akram Ali","doi":"10.1515/math-2022-0610","DOIUrl":null,"url":null,"abstract":"Abstract The prime objective of the approach is to give geometric classifications of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> </m:math> k -almost Ricci solitons associated with paracontact manifolds. Let <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>M</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> <m:mi>n</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>φ</m:mi> <m:mo>,</m:mo> <m:mi>ξ</m:mi> <m:mo>,</m:mo> <m:mi>η</m:mi> <m:mo>,</m:mo> <m:mi>g</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> {M}^{2n+1}\\left(\\varphi ,\\xi ,\\eta ,g) be a paracontact metric manifold, and if a <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>K</m:mi> </m:math> K -paracontact metric <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>g</m:mi> </m:math> g represents a <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> </m:math> k -almost Ricci soliton <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>g</m:mi> <m:mo>,</m:mo> <m:mi>V</m:mi> <m:mo>,</m:mo> <m:mi>k</m:mi> <m:mo>,</m:mo> <m:mi>λ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> \\left(g,V,k,\\lambda ) and the potential vector field <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>V</m:mi> </m:math> V is Jacobi field along the Reeb vector field <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ξ</m:mi> </m:math> \\xi , then either <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mi>λ</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> <m:mi>n</m:mi> </m:math> k=\\lambda -2n , or <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>g</m:mi> </m:math> g is a <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> </m:math> k -Ricci soliton. Next, we consider <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>K</m:mi> </m:math> K -paracontact manifold as a <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> </m:math> k -almost Ricci soliton with the potential vector field <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>V</m:mi> </m:math> V is infinitesimal paracontact transformation or collinear with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ξ</m:mi> </m:math> \\xi . We have proved that if a paracontact metric as a <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> </m:math> k -almost Ricci soliton associated with the non-zero potential vector field <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>V</m:mi> </m:math> V is collinear with <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ξ</m:mi> </m:math> \\xi and the Ricci operator <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>Q</m:mi> </m:math> Q commutes with paracontact structure <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>φ</m:mi> </m:math> \\varphi , then it is Einstein of constant scalar curvature equals to <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>−</m:mo> <m:mn>2</m:mn> <m:mi>n</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>2</m:mn> <m:mi>n</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> -2n\\left(2n+1) . Finally, we have deduced that a para-Sasakian manifold admitting a gradient <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> </m:math> k -almost Ricci soliton is Einstein of constant scalar curvature equals to <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>−</m:mo> <m:mn>2</m:mn> <m:mi>n</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>2</m:mn> <m:mi>n</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> -2n\\left(2n+1) .","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"235 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Geometric classifications of <i>k</i>-almost Ricci solitons admitting paracontact metrices\",\"authors\":\"Yanlin Li, Dhriti Sundar Patra, Nadia Alluhaibi, Fatemah Mofarreh, Akram Ali\",\"doi\":\"10.1515/math-2022-0610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The prime objective of the approach is to give geometric classifications of <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>k</m:mi> </m:math> k -almost Ricci solitons associated with paracontact manifolds. Let <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi>M</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> <m:mi>n</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>φ</m:mi> <m:mo>,</m:mo> <m:mi>ξ</m:mi> <m:mo>,</m:mo> <m:mi>η</m:mi> <m:mo>,</m:mo> <m:mi>g</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> {M}^{2n+1}\\\\left(\\\\varphi ,\\\\xi ,\\\\eta ,g) be a paracontact metric manifold, and if a <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>K</m:mi> </m:math> K -paracontact metric <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>g</m:mi> </m:math> g represents a <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>k</m:mi> </m:math> k -almost Ricci soliton <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>g</m:mi> <m:mo>,</m:mo> <m:mi>V</m:mi> <m:mo>,</m:mo> <m:mi>k</m:mi> <m:mo>,</m:mo> <m:mi>λ</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> \\\\left(g,V,k,\\\\lambda ) and the potential vector field <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>V</m:mi> </m:math> V is Jacobi field along the Reeb vector field <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>ξ</m:mi> </m:math> \\\\xi , then either <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mi>λ</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> <m:mi>n</m:mi> </m:math> k=\\\\lambda -2n , or <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>g</m:mi> </m:math> g is a <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>k</m:mi> </m:math> k -Ricci soliton. Next, we consider <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>K</m:mi> </m:math> K -paracontact manifold as a <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>k</m:mi> </m:math> k -almost Ricci soliton with the potential vector field <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>V</m:mi> </m:math> V is infinitesimal paracontact transformation or collinear with <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>ξ</m:mi> </m:math> \\\\xi . We have proved that if a paracontact metric as a <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>k</m:mi> </m:math> k -almost Ricci soliton associated with the non-zero potential vector field <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>V</m:mi> </m:math> V is collinear with <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>ξ</m:mi> </m:math> \\\\xi and the Ricci operator <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>Q</m:mi> </m:math> Q commutes with paracontact structure <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>φ</m:mi> </m:math> \\\\varphi , then it is Einstein of constant scalar curvature equals to <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mo>−</m:mo> <m:mn>2</m:mn> <m:mi>n</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>2</m:mn> <m:mi>n</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> -2n\\\\left(2n+1) . Finally, we have deduced that a para-Sasakian manifold admitting a gradient <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>k</m:mi> </m:math> k -almost Ricci soliton is Einstein of constant scalar curvature equals to <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mo>−</m:mo> <m:mn>2</m:mn> <m:mi>n</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>2</m:mn> <m:mi>n</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> -2n\\\\left(2n+1) .\",\"PeriodicalId\":48713,\"journal\":{\"name\":\"Open Mathematics\",\"volume\":\"235 1\",\"pages\":\"0\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2022-0610\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/math-2022-0610","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7
摘要
该方法的主要目的是给出与副接触流形相关的k - k -几乎Ricci孤子的几何分类。设m2n +1 (φ, ξ, η,g) {M}^{2n+1}\left (\varphi, \xi, \eta,g)是一个副接触度量流形,如果一个K K -副接触度量g g表示一个K K -几乎里奇孤子(g,V, K, λ) \left (g,V, K, \lambda)并且势向量场V V是沿Reeb向量场ξ \xi的Jacobi场,那么K = λ−2n K = \lambda -2n,或者g是k k -里奇孤子。其次,我们将K K -副接触流形视为具有势向量场V V的K K -几乎Ricci孤子,V V是无穷小的副接触变换或与ξ \xi共线。我们证明了如果一个与非零势向量场V V相关的k k -几乎Ricci孤子与ξ \xi共线并且Ricci算子Q Q与副接触结构φ \varphi交换,那么它就是常数曲率等于-2n (2n+1) -2n \left (2n+1)的爱因斯坦。最后,我们推导出具有k - k -几乎Ricci孤子的准sasakian流形是常数曲率为-2n (2n+1) -2n \left (2n+1)的Einstein。
Geometric classifications of k-almost Ricci solitons admitting paracontact metrices
Abstract The prime objective of the approach is to give geometric classifications of k k -almost Ricci solitons associated with paracontact manifolds. Let M2n+1(φ,ξ,η,g) {M}^{2n+1}\left(\varphi ,\xi ,\eta ,g) be a paracontact metric manifold, and if a K K -paracontact metric g g represents a k k -almost Ricci soliton (g,V,k,λ) \left(g,V,k,\lambda ) and the potential vector field V V is Jacobi field along the Reeb vector field ξ \xi , then either k=λ−2n k=\lambda -2n , or g g is a k k -Ricci soliton. Next, we consider K K -paracontact manifold as a k k -almost Ricci soliton with the potential vector field V V is infinitesimal paracontact transformation or collinear with ξ \xi . We have proved that if a paracontact metric as a k k -almost Ricci soliton associated with the non-zero potential vector field V V is collinear with ξ \xi and the Ricci operator Q Q commutes with paracontact structure φ \varphi , then it is Einstein of constant scalar curvature equals to −2n(2n+1) -2n\left(2n+1) . Finally, we have deduced that a para-Sasakian manifold admitting a gradient k k -almost Ricci soliton is Einstein of constant scalar curvature equals to −2n(2n+1) -2n\left(2n+1) .
期刊介绍:
Open Mathematics - formerly Central European Journal of Mathematics
Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.
Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.
Aims and Scope
The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes: