Open Mathematics最新文献

筛选
英文 中文
A characterization of a ∼ admissible congruence on a weakly type B semigroup 弱B型半群上一个可容许同余的刻画
IF 1.7 4区 数学
Open Mathematics Pub Date : 2023-12-01 DOI: 10.1515/math-2023-0152
Chunhua Li, Jieying Fang, Lingxiang Meng, Huawei Huang
{"title":"A characterization of a ∼ admissible congruence on a weakly type B semigroup","authors":"Chunhua Li, Jieying Fang, Lingxiang Meng, Huawei Huang","doi":"10.1515/math-2023-0152","DOIUrl":"https://doi.org/10.1515/math-2023-0152","url":null,"abstract":"In this article, the notions of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0152_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>∼</m:mo> </m:math> <jats:tex-math> sim </jats:tex-math> </jats:alternatives> </jats:inline-formula> admissible congruences and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0152_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>∼</m:mo> </m:math> <jats:tex-math> sim </jats:tex-math> </jats:alternatives> </jats:inline-formula> normal congruences on a weakly type B semigroup are characterized and the relationship between <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0152_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>∼</m:mo> </m:math> <jats:tex-math> sim </jats:tex-math> </jats:alternatives> </jats:inline-formula> admissible congruences and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0152_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>∼</m:mo> </m:math> <jats:tex-math> sim </jats:tex-math> </jats:alternatives> </jats:inline-formula> normal congruences is investigated. In particular, some properties of such congruences on a weakly type B semigroup are given using an approach of kernel-trace. Finally, we extend the congruence pair on an inverse semigroup to the case of a weakly type B semigroup and obtain some results.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138542986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On Bohr's inequality for special subclasses of stable starlike harmonic mappings 稳定类星调和映射特殊子类的玻尔不等式
IF 1.7 4区 数学
Open Mathematics Pub Date : 2023-12-01 DOI: 10.1515/math-2023-0141
Wei Jin, Zhihong Liu, Qian Hu, Wenbo Zhang
{"title":"On Bohr's inequality for special subclasses of stable starlike harmonic mappings","authors":"Wei Jin, Zhihong Liu, Qian Hu, Wenbo Zhang","doi":"10.1515/math-2023-0141","DOIUrl":"https://doi.org/10.1515/math-2023-0141","url":null,"abstract":"The focus of this article is to explore the Bohr inequality for a specific subset of harmonic starlike mappings introduced by Ghosh and Vasudevarao (<jats:italic>Some basic properties of certain subclass of harmonic univalent functions</jats:italic>, Complex Var. Elliptic Equ. 63 (2018), no. 12, 1687–1703.). This set is denoted as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0141_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:mrow> <m:mrow> <m:mi>H</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msubsup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>M</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≔</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mrow> <m:mi>f</m:mi> <m:mo>=</m:mo> <m:mi>h</m:mi> <m:mo>+</m:mo> <m:mover accent=\"true\"> <m:mrow> <m:mi>g</m:mi> </m:mrow> <m:mrow> <m:mo stretchy=\"true\">¯</m:mo> </m:mrow> </m:mover> <m:mo>∈</m:mo> <m:msub> <m:mrow> <m:mi mathvariant=\"script\">ℋ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>:</m:mo> <m:mrow> <m:mo stretchy=\"false\">∣</m:mo> <m:mrow> <m:mi>z</m:mi> <m:msup> <m:mrow> <m:mi>h</m:mi> </m:mrow> <m:mrow> <m:mo accent=\"true\">″</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">∣</m:mo> </m:mrow> <m:mo>≤</m:mo> <m:mi>M</m:mi> <m:mo>−</m:mo> <m:mrow> <m:mo stretchy=\"false\">∣</m:mo> <m:mrow> <m:mi>z</m:mi> <m:msup> <m:mrow> <m:mi>g</m:mi> </m:mrow> <m:mrow> <m:mo accent=\"true\">″</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">∣</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:math> <jats:tex-math>{{mathcal{ {mathcal B} }}}_{H}^{0}left(M):= {f=h+overline{g}in {{mathcal{ {mathcal H} }}}_{0}:| z{h}^{^{primeprime} }left(z)| le M-| z{g}^{^{primeprime} }left(z)| }</jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0141_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>z</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"double-struck\">D</m:mi> </m:math> <jats:tex-math>zin {mathbb{D}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0141_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>0</m:mn> <m:mo>&lt;</m:mo> <m:mi>M</m:mi> <m:mo>≤</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math>0lt Mle 1</jats:tex-math> </jats:alternatives> </jats:inline-formula>. It is worth mentioning that the functions belonging to the class <jats:inline-formula> <jats:alternatives> <ja","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138527075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Properties of meromorphic solutions of first-order differential-difference equations 一阶微分-差分方程亚纯解的性质
IF 1.7 4区 数学
Open Mathematics Pub Date : 2023-12-01 DOI: 10.1515/math-2023-0147
Lihao Wu, Baoqin Chen, Sheng Li
{"title":"Properties of meromorphic solutions of first-order differential-difference equations","authors":"Lihao Wu, Baoqin Chen, Sheng Li","doi":"10.1515/math-2023-0147","DOIUrl":"https://doi.org/10.1515/math-2023-0147","url":null,"abstract":"For the first-order differential-difference equations of the form <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0147_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mi>A</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>+</m:mo> <m:mi>B</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi>f</m:mi> <m:mo accent=\"false\">′</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>+</m:mo> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>F</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:math> <jats:tex-math>Aleft(z)fleft(z+1)+Bleft(z)f^{prime} left(z)+Cleft(z)fleft(z)=Fleft(z),</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0147_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>A</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>B</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>C</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>Aleft(z),Bleft(z),Cleft(z)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0147_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>F</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>Fleft(z)</jats:tex-math> </jats:alternatives> </jats:inline-formula> are polynomials, the existence, growth, zeros, poles, and fixed points of their nonconstant meromorphic solutions are investigated. It is shown that all nonconstant meromorphic solutions are transcendental when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0147_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">deg</m:mi> <m:mi>B</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>&lt;</m:mo> <m:mi mathvariant=\"normal\">deg</m:mi> <m:mrow> <m:mo>{</m:mo> <m:mrow> <m:mi>A</m:mi> <m:mrow> <m:mo>(</m:mo> <m:m","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138527073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Schur-power convexity of integral mean for convex functions on the coordinates 坐标上凸函数的积分均值的schur幂凸性
IF 1.7 4区 数学
Open Mathematics Pub Date : 2023-12-01 DOI: 10.1515/math-2023-0157
Huannan Shi, Jing Zhang
{"title":"Schur-power convexity of integral mean for convex functions on the coordinates","authors":"Huannan Shi, Jing Zhang","doi":"10.1515/math-2023-0157","DOIUrl":"https://doi.org/10.1515/math-2023-0157","url":null,"abstract":"In this article, we investigate the concepts of monotonicity, Schur-geometric convexity, Schur-harmonic convexity, and Schur-power convexity for the lower and upper limits of the integral mean, focusing on convex functions on coordinate axes. Furthermore, we introduce novel and fascinating inequalities for binary means as a practical application.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138527074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ricci ϕ-invariance on almost cosymplectic three-manifolds 几乎余辛三流形上的Ricci -不变性
IF 1.7 4区 数学
Open Mathematics Pub Date : 2023-11-28 DOI: 10.1515/math-2023-0156
Quanxiang Pan
{"title":"Ricci ϕ-invariance on almost cosymplectic three-manifolds","authors":"Quanxiang Pan","doi":"10.1515/math-2023-0156","DOIUrl":"https://doi.org/10.1515/math-2023-0156","url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0156_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>M</m:mi> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>{M}^{3}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a strictly almost cosymplectic three-manifold whose Ricci operator is weakly <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0156_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ϕ</m:mi> </m:math> <jats:tex-math>phi </jats:tex-math> </jats:alternatives> </jats:inline-formula>-invariant. In this article, it is proved that Ricci curvatures of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0156_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>M</m:mi> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>{M}^{3}</jats:tex-math> </jats:alternatives> </jats:inline-formula> are invariant along the Reeb flow if and only if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0156_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>M</m:mi> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>{M}^{3}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is locally isometric to the Lie group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0156_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>E</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>Eleft(1,1)</jats:tex-math> </jats:alternatives> </jats:inline-formula> of rigid motions of the Minkowski 2-space equipped with a left-invariant almost cosymplectic structure.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138527058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Properties of locally semi-compact Ir-topological groups 局部半紧ir -拓扑群的性质
IF 1.7 4区 数学
Open Mathematics Pub Date : 2023-11-24 DOI: 10.1515/math-2023-0144
ZhongLi Wang, Wen Chean Teh
{"title":"Properties of locally semi-compact Ir-topological groups","authors":"ZhongLi Wang, Wen Chean Teh","doi":"10.1515/math-2023-0144","DOIUrl":"https://doi.org/10.1515/math-2023-0144","url":null,"abstract":"This study investigates some topological properties of locally semi-compact Ir-topological groups and establishes the relationship between Ir-topological groups and semi-compact spaces. The proved theorems generalize the corresponding results of Ir-topological group. Finally, we define a quotient topology on the Ir-topological group and study some topological properties of the space.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138527076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
About a dubious proof of a correct result about closed Newton Cotes error formulas 关于一个关于封闭牛顿柯特误差公式的正确结果的可疑证明
IF 1.7 4区 数学
Open Mathematics Pub Date : 2023-11-24 DOI: 10.1515/math-2023-0150
David J. López, Jose A. Padilla, Juan Ruiz, Carlos Tapia, Juan C. Trillo
{"title":"About a dubious proof of a correct result about closed Newton Cotes error formulas","authors":"David J. López, Jose A. Padilla, Juan Ruiz, Carlos Tapia, Juan C. Trillo","doi":"10.1515/math-2023-0150","DOIUrl":"https://doi.org/10.1515/math-2023-0150","url":null,"abstract":"In this study, we comment about a wrong proof, at least incomplete, of the closed Newton Cotes error formulas for integration in a closed interval <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0150_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mi>a</m:mi> <m:mo>,</m:mo> <m:mi>b</m:mi> </m:mrow> <m:mo>]</m:mo> </m:mrow> <m:mo>.</m:mo> </m:math> <jats:tex-math>left[a,b].</jats:tex-math> </jats:alternatives> </jats:inline-formula> These error formulas appear as an intuitive generalization of the simple proof for the error formula of the trapezoidal rule, and their proofs present one controversial step, which converts the proofs in mischievous, or at least, this step needs a clear clarification that it is not easy to derive. The correct proof of such formulas comes from a technique based on the Peano kernel.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138527060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new reverse half-discrete Hilbert-type inequality with one partial sum involving one derivative function of higher order 一个新的具有一个高阶导数函数的部分和的逆半离散hilbert型不等式
IF 1.7 4区 数学
Open Mathematics Pub Date : 2023-11-21 DOI: 10.1515/math-2023-0139
Jianquan Liao, Bicheng Yang
{"title":"A new reverse half-discrete Hilbert-type inequality with one partial sum involving one derivative function of higher order","authors":"Jianquan Liao, Bicheng Yang","doi":"10.1515/math-2023-0139","DOIUrl":"https://doi.org/10.1515/math-2023-0139","url":null,"abstract":"In this article, a new reverse half-discrete Hilbert-type inequality with one partial sum involving one derivative function of higher order is obtained, by using the weight functions, the mid-value theorem, and the techniques of real analysis. A few equivalent statements of the best possible constant factor related to several parameters are considered. As applications, the equivalent forms and some particular inequalities are provided.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138527108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ordering stability of Nash equilibria for a class of differential games 一类微分对策纳什均衡的序稳定性
IF 1.7 4区 数学
Open Mathematics Pub Date : 2023-11-21 DOI: 10.1515/math-2023-0132
Keke Jia, Shihuang Hong, Jieqing Yue
{"title":"Ordering stability of Nash equilibria for a class of differential games","authors":"Keke Jia, Shihuang Hong, Jieqing Yue","doi":"10.1515/math-2023-0132","DOIUrl":"https://doi.org/10.1515/math-2023-0132","url":null,"abstract":"This study is concerned with the stability of Nash equilibria for a class of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0132_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>n</m:mi> </m:math> <jats:tex-math>n</jats:tex-math> </jats:alternatives> </jats:inline-formula>-person noncooperative differential games. More precisely, due to a preorder induced by a convex cone on a real linear normed space, we define a new concept called ordering stability of equilibria against the perturbation of the right-hand side functions of state equations for the differential game. Moreover, using the set-valued analysis theory, we present the sufficient conditions of the ordering stability for such differential games.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138527059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcendental entire solutions of several complex product-type nonlinear partial differential equations in ℂ2 若干复乘积型非线性偏微分方程的超越整解
IF 1.7 4区 数学
Open Mathematics Pub Date : 2023-11-20 DOI: 10.1515/math-2023-0151
Yi Hui Xu, Yan Fang Li, Xiao Lan Liu, Hong Yan Xu
{"title":"Transcendental entire solutions of several complex product-type nonlinear partial differential equations in ℂ2","authors":"Yi Hui Xu, Yan Fang Li, Xiao Lan Liu, Hong Yan Xu","doi":"10.1515/math-2023-0151","DOIUrl":"https://doi.org/10.1515/math-2023-0151","url":null,"abstract":"Our purpose in this article is to describe the solutions of several product-type nonlinear partial differential equations (PDEs) <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0151_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>a</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:msub> <m:mrow> <m:mi>b</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:msub> <m:mrow> <m:mi>c</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>a</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:msub> <m:mrow> <m:mi>b</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:msub> <m:mrow> <m:mi>c</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> </m:math> <jats:tex-math>left({a}_{1}u+{b}_{1}{u}_{{z}_{1}}+{c}_{1}{u}_{{z}_{2}})left({a}_{2}u+{b}_{2}{u}_{{z}_{1}}+{c}_{2}{u}_{{z}_{2}})=1,</jats:tex-math> </jats:alternatives> </jats:disp-formula> and <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0151_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>a</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:msub> <m:mrow> <m:mi>b</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:msub> <m:mrow> <m:mi>c</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>a</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow>","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138527107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信