On Bohr's inequality for special subclasses of stable starlike harmonic mappings

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Wei Jin, Zhihong Liu, Qian Hu, Wenbo Zhang
{"title":"On Bohr's inequality for special subclasses of stable starlike harmonic mappings","authors":"Wei Jin, Zhihong Liu, Qian Hu, Wenbo Zhang","doi":"10.1515/math-2023-0141","DOIUrl":null,"url":null,"abstract":"The focus of this article is to explore the Bohr inequality for a specific subset of harmonic starlike mappings introduced by Ghosh and Vasudevarao (<jats:italic>Some basic properties of certain subclass of harmonic univalent functions</jats:italic>, Complex Var. Elliptic Equ. 63 (2018), no. 12, 1687–1703.). This set is denoted as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0141_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:mrow> <m:mrow> <m:mi>H</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msubsup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>M</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≔</m:mo> <m:mrow> <m:mo stretchy=\"false\">{</m:mo> <m:mrow> <m:mi>f</m:mi> <m:mo>=</m:mo> <m:mi>h</m:mi> <m:mo>+</m:mo> <m:mover accent=\"true\"> <m:mrow> <m:mi>g</m:mi> </m:mrow> <m:mrow> <m:mo stretchy=\"true\">¯</m:mo> </m:mrow> </m:mover> <m:mo>∈</m:mo> <m:msub> <m:mrow> <m:mi mathvariant=\"script\">ℋ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>:</m:mo> <m:mrow> <m:mo stretchy=\"false\">∣</m:mo> <m:mrow> <m:mi>z</m:mi> <m:msup> <m:mrow> <m:mi>h</m:mi> </m:mrow> <m:mrow> <m:mo accent=\"true\">″</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">∣</m:mo> </m:mrow> <m:mo>≤</m:mo> <m:mi>M</m:mi> <m:mo>−</m:mo> <m:mrow> <m:mo stretchy=\"false\">∣</m:mo> <m:mrow> <m:mi>z</m:mi> <m:msup> <m:mrow> <m:mi>g</m:mi> </m:mrow> <m:mrow> <m:mo accent=\"true\">″</m:mo> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">∣</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">}</m:mo> </m:mrow> </m:math> <jats:tex-math>{{\\mathcal{ {\\mathcal B} }}}_{H}^{0}\\left(M):= \\{f=h+\\overline{g}\\in {{\\mathcal{ {\\mathcal H} }}}_{0}:| z{h}^{^{\\prime\\prime} }\\left(z)| \\le M-| z{g}^{^{\\prime\\prime} }\\left(z)| \\}</jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0141_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>z</m:mi> <m:mo>∈</m:mo> <m:mi mathvariant=\"double-struck\">D</m:mi> </m:math> <jats:tex-math>z\\in {\\mathbb{D}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0141_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>0</m:mn> <m:mo>&lt;</m:mo> <m:mi>M</m:mi> <m:mo>≤</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math>0\\lt M\\le 1</jats:tex-math> </jats:alternatives> </jats:inline-formula>. It is worth mentioning that the functions belonging to the class <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0141_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mi mathvariant=\"script\">ℬ</m:mi> </m:mrow> <m:mrow> <m:mi>H</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msubsup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>M</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{{\\mathcal{ {\\mathcal B} }}}_{H}^{0}\\left(M)</jats:tex-math> </jats:alternatives> </jats:inline-formula> are recognized for their stability as starlike harmonic mappings. With this in mind, this research has a twofold goal: first, to determine the optimal Bohr radius for this specific subclass of harmonic mappings, and second, to extend the Bohr-Rogosinski phenomenon to the same subclass.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0141","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The focus of this article is to explore the Bohr inequality for a specific subset of harmonic starlike mappings introduced by Ghosh and Vasudevarao (Some basic properties of certain subclass of harmonic univalent functions, Complex Var. Elliptic Equ. 63 (2018), no. 12, 1687–1703.). This set is denoted as H 0 ( M ) { f = h + g ¯ 0 : z h ( z ) M z g ( z ) } {{\mathcal{ {\mathcal B} }}}_{H}^{0}\left(M):= \{f=h+\overline{g}\in {{\mathcal{ {\mathcal H} }}}_{0}:| z{h}^{^{\prime\prime} }\left(z)| \le M-| z{g}^{^{\prime\prime} }\left(z)| \} for z D z\in {\mathbb{D}} , where 0 < M 1 0\lt M\le 1 . It is worth mentioning that the functions belonging to the class H 0 ( M ) {{\mathcal{ {\mathcal B} }}}_{H}^{0}\left(M) are recognized for their stability as starlike harmonic mappings. With this in mind, this research has a twofold goal: first, to determine the optimal Bohr radius for this specific subclass of harmonic mappings, and second, to extend the Bohr-Rogosinski phenomenon to the same subclass.
稳定类星调和映射特殊子类的玻尔不等式
本文的重点是探讨Ghosh和Vasudevarao引入的调和星状映射的特定子集的Bohr不等式(调和一元函数的某些子类的一些基本性质,Complex Var. Elliptic equation . 63 (2018), no. 11)。(1687-1703)。这个集合表示为:{f= H + g¯∈H 0:∣z H″(z)∣≤M−∣zg″(z)∣}{{\mathcal{ {\mathcal B} }}} _H{^}0{}\left (M):= {f= H + \overline{g}\in{{\mathcal{ {\mathcal H} }}} _0{:| }zh{^}^{{\prime\prime}}\left (z)| \le M-| {zg}^{^{\prime\prime}}\left (z)|} for z∈D z \in{\mathbb{D}},其中0 &lt;M≤10 \lt M \le值得一提的是,属于该类函数的_H 0 (M) {{\mathcal{ {\mathcal B} }}} _H{^}0{}\left (M)被认为是稳定的星状调和映射。考虑到这一点,本研究有两个目标:第一,确定调和映射的特定子类的最佳玻尔半径,第二,将玻尔-罗戈辛斯基现象扩展到同一子类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信