{"title":"A characterization of a ∼ admissible congruence on a weakly type B semigroup","authors":"Chunhua Li, Jieying Fang, Lingxiang Meng, Huawei Huang","doi":"10.1515/math-2023-0152","DOIUrl":null,"url":null,"abstract":"In this article, the notions of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0152_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>∼</m:mo> </m:math> <jats:tex-math> \\sim </jats:tex-math> </jats:alternatives> </jats:inline-formula> admissible congruences and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0152_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>∼</m:mo> </m:math> <jats:tex-math> \\sim </jats:tex-math> </jats:alternatives> </jats:inline-formula> normal congruences on a weakly type B semigroup are characterized and the relationship between <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0152_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>∼</m:mo> </m:math> <jats:tex-math> \\sim </jats:tex-math> </jats:alternatives> </jats:inline-formula> admissible congruences and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0152_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>∼</m:mo> </m:math> <jats:tex-math> \\sim </jats:tex-math> </jats:alternatives> </jats:inline-formula> normal congruences is investigated. In particular, some properties of such congruences on a weakly type B semigroup are given using an approach of kernel-trace. Finally, we extend the congruence pair on an inverse semigroup to the case of a weakly type B semigroup and obtain some results.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"3 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0152","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, the notions of ∼ \sim admissible congruences and ∼ \sim normal congruences on a weakly type B semigroup are characterized and the relationship between ∼ \sim admissible congruences and ∼ \sim normal congruences is investigated. In particular, some properties of such congruences on a weakly type B semigroup are given using an approach of kernel-trace. Finally, we extend the congruence pair on an inverse semigroup to the case of a weakly type B semigroup and obtain some results.
期刊介绍:
Open Mathematics - formerly Central European Journal of Mathematics
Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.
Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.
Aims and Scope
The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes: