A characterization of a ∼ admissible congruence on a weakly type B semigroup

IF 1 4区 数学 Q1 MATHEMATICS
Chunhua Li, Jieying Fang, Lingxiang Meng, Huawei Huang
{"title":"A characterization of a ∼ admissible congruence on a weakly type B semigroup","authors":"Chunhua Li, Jieying Fang, Lingxiang Meng, Huawei Huang","doi":"10.1515/math-2023-0152","DOIUrl":null,"url":null,"abstract":"In this article, the notions of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0152_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>∼</m:mo> </m:math> <jats:tex-math> \\sim </jats:tex-math> </jats:alternatives> </jats:inline-formula> admissible congruences and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0152_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>∼</m:mo> </m:math> <jats:tex-math> \\sim </jats:tex-math> </jats:alternatives> </jats:inline-formula> normal congruences on a weakly type B semigroup are characterized and the relationship between <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0152_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>∼</m:mo> </m:math> <jats:tex-math> \\sim </jats:tex-math> </jats:alternatives> </jats:inline-formula> admissible congruences and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0152_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>∼</m:mo> </m:math> <jats:tex-math> \\sim </jats:tex-math> </jats:alternatives> </jats:inline-formula> normal congruences is investigated. In particular, some properties of such congruences on a weakly type B semigroup are given using an approach of kernel-trace. Finally, we extend the congruence pair on an inverse semigroup to the case of a weakly type B semigroup and obtain some results.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"3 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0152","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, the notions of \sim admissible congruences and \sim normal congruences on a weakly type B semigroup are characterized and the relationship between \sim admissible congruences and \sim normal congruences is investigated. In particular, some properties of such congruences on a weakly type B semigroup are given using an approach of kernel-trace. Finally, we extend the congruence pair on an inverse semigroup to the case of a weakly type B semigroup and obtain some results.
弱B型半群上一个可容许同余的刻画
本文刻画了弱型B半群上的~ \sim可容许同余和~ \sim正规同余的概念,并研究了~ \sim可容许同余和~ \sim正规同余之间的关系。特别地,利用核迹的方法给出了弱型B半群上这类同余的一些性质。最后,将逆半群上的同余对推广到弱型B半群上,得到了一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Mathematics
Open Mathematics MATHEMATICS-
CiteScore
2.40
自引率
5.90%
发文量
67
审稿时长
16 weeks
期刊介绍: Open Mathematics - formerly Central European Journal of Mathematics Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind. Aims and Scope The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信