Ordering stability of Nash equilibria for a class of differential games

IF 1 4区 数学 Q1 MATHEMATICS
Keke Jia, Shihuang Hong, Jieqing Yue
{"title":"Ordering stability of Nash equilibria for a class of differential games","authors":"Keke Jia, Shihuang Hong, Jieqing Yue","doi":"10.1515/math-2023-0132","DOIUrl":null,"url":null,"abstract":"This study is concerned with the stability of Nash equilibria for a class of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0132_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>n</m:mi> </m:math> <jats:tex-math>n</jats:tex-math> </jats:alternatives> </jats:inline-formula>-person noncooperative differential games. More precisely, due to a preorder induced by a convex cone on a real linear normed space, we define a new concept called ordering stability of equilibria against the perturbation of the right-hand side functions of state equations for the differential game. Moreover, using the set-valued analysis theory, we present the sufficient conditions of the ordering stability for such differential games.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"16 5","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0132","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study is concerned with the stability of Nash equilibria for a class of n n -person noncooperative differential games. More precisely, due to a preorder induced by a convex cone on a real linear normed space, we define a new concept called ordering stability of equilibria against the perturbation of the right-hand side functions of state equations for the differential game. Moreover, using the set-valued analysis theory, we present the sufficient conditions of the ordering stability for such differential games.
一类微分对策纳什均衡的序稳定性
研究一类n n人非合作微分对策的纳什均衡的稳定性。更准确地说,由于凸锥在实线性赋范空间上的预序性,我们定义了微分对策在状态方程右侧函数扰动下平衡点的有序稳定性。利用集值分析理论,给出了这类微分对策序稳定的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Mathematics
Open Mathematics MATHEMATICS-
CiteScore
2.40
自引率
5.90%
发文量
67
审稿时长
16 weeks
期刊介绍: Open Mathematics - formerly Central European Journal of Mathematics Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind. Aims and Scope The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信