About a dubious proof of a correct result about closed Newton Cotes error formulas

IF 1 4区 数学 Q1 MATHEMATICS
David J. López, Jose A. Padilla, Juan Ruiz, Carlos Tapia, Juan C. Trillo
{"title":"About a dubious proof of a correct result about closed Newton Cotes error formulas","authors":"David J. López, Jose A. Padilla, Juan Ruiz, Carlos Tapia, Juan C. Trillo","doi":"10.1515/math-2023-0150","DOIUrl":null,"url":null,"abstract":"In this study, we comment about a wrong proof, at least incomplete, of the closed Newton Cotes error formulas for integration in a closed interval <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0150_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mi>a</m:mi> <m:mo>,</m:mo> <m:mi>b</m:mi> </m:mrow> <m:mo>]</m:mo> </m:mrow> <m:mo>.</m:mo> </m:math> <jats:tex-math>\\left[a,b].</jats:tex-math> </jats:alternatives> </jats:inline-formula> These error formulas appear as an intuitive generalization of the simple proof for the error formula of the trapezoidal rule, and their proofs present one controversial step, which converts the proofs in mischievous, or at least, this step needs a clear clarification that it is not easy to derive. The correct proof of such formulas comes from a technique based on the Peano kernel.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0150","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we comment about a wrong proof, at least incomplete, of the closed Newton Cotes error formulas for integration in a closed interval [ a , b ] . \left[a,b]. These error formulas appear as an intuitive generalization of the simple proof for the error formula of the trapezoidal rule, and their proofs present one controversial step, which converts the proofs in mischievous, or at least, this step needs a clear clarification that it is not easy to derive. The correct proof of such formulas comes from a technique based on the Peano kernel.
关于一个关于封闭牛顿柯特误差公式的正确结果的可疑证明
在本研究中,我们评论了闭区间积分的闭牛顿柯特误差公式的一个错误证明,至少是不完整的证明[a, b]。\ [a, b]。这些误差公式是对梯形定则误差公式的简单证明的一种直观的推广,它们的证明有一个有争议的步骤,它把证明变成了恶作剧,或者至少,这一步需要明确说明,它不容易推导。这些公式的正确证明来自一种基于Peano内核的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Mathematics
Open Mathematics MATHEMATICS-
CiteScore
2.40
自引率
5.90%
发文量
67
审稿时长
16 weeks
期刊介绍: Open Mathematics - formerly Central European Journal of Mathematics Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind. Aims and Scope The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信