Open Mathematics最新文献

筛选
英文 中文
On pomonoid of partial transformations of a poset 论正集部分变换的 "π"(pomonoid)
IF 1.7 4区 数学
Open Mathematics Pub Date : 2023-12-16 DOI: 10.1515/math-2023-0161
Bana Al Subaiei
{"title":"On pomonoid of partial transformations of a poset","authors":"Bana Al Subaiei","doi":"10.1515/math-2023-0161","DOIUrl":"https://doi.org/10.1515/math-2023-0161","url":null,"abstract":"The main objective of this article is to study the ordered partial transformations <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0161_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">PO</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{mathcal{PO}}left(X)</jats:tex-math> </jats:alternatives> </jats:inline-formula> of a poset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0161_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The findings show that the set of all partial transformations of a poset with a pointwise order is not necessarily a pomonoid. Some conditions are implemented to guarantee that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0161_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">PO</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{mathcal{PO}}left(X)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a pomonoid and this pomonoid is denoted by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0161_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"script\">PO</m:mi> </m:mrow> <m:mrow> <m:mi>↑</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{{mathcal{PO}}}^{uparrow }left(X)</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Moreover, we determine the necessary conditions in order that the partial order-embedding transformations define the ordered version of the symmetric inverse monoid. The findings show that this set is an inverse pomonoid and we will denote it by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0161_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"script\">ℐPO</m:mi> </m:mrow> <m:mrow> <m:mi>↑</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{{mathcal{ {mathcal I} PO}}}^{uparrow }left(X)</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In case the order on the poset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0161_eq_006.png","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138687900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global well-posedness of initial-boundary value problem of fifth-order KdV equation posed on finite interval 有限区间上五阶 KdV 方程初始边界值问题的全局好求解性
IF 1.7 4区 数学
Open Mathematics Pub Date : 2023-12-16 DOI: 10.1515/math-2023-0158
Xiangqing Zhao, Chengqiang Wang, Jifeng Bao
{"title":"Global well-posedness of initial-boundary value problem of fifth-order KdV equation posed on finite interval","authors":"Xiangqing Zhao, Chengqiang Wang, Jifeng Bao","doi":"10.1515/math-2023-0158","DOIUrl":"https://doi.org/10.1515/math-2023-0158","url":null,"abstract":"We have established the existence and uniqueness of the local solution for <jats:disp-formula> <jats:label>(0.1)</jats:label> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0158_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mfenced open=\"{\" close=\"\"> <m:mrow> <m:mtable displaystyle=\"true\"> <m:mtr> <m:mtd columnalign=\"left\"> <m:msub> <m:mrow> <m:mo>∂</m:mo> </m:mrow> <m:mrow> <m:mi>t</m:mi> </m:mrow> </m:msub> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:msubsup> <m:mrow> <m:mo>∂</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mn>5</m:mn> </m:mrow> </m:msubsup> <m:mi>u</m:mi> <m:mo>−</m:mo> <m:mi>u</m:mi> <m:msub> <m:mrow> <m:mo>∂</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:mtd> <m:mtd columnalign=\"left\"> <m:mn>0</m:mn> <m:mo>&lt;</m:mo> <m:mi>x</m:mi> <m:mo>&lt;</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mspace width=\"1.0em\" /> <m:mi>t</m:mi> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>φ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mtd> <m:mtd columnalign=\"left\"> <m:mn>0</m:mn> <m:mo>&lt;</m:mo> <m:mi>x</m:mi> <m:mo>&lt;</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>h</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>h</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\"0.33em\" /> <m:msub> <m:mrow> <m:mo>∂</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>h</m:mi> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mtd> <m:mtd columnalign=\"left\" /> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:msub> <m:mrow> <m:mo>∂</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msub","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138687816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Approximate solvability method for nonlocal impulsive evolution equation 非局部脉冲演化方程的近似可解法
IF 1.7 4区 数学
Open Mathematics Pub Date : 2023-12-14 DOI: 10.1515/math-2023-0155
Weifeng Ma, Yongxiang Li
{"title":"Approximate solvability method for nonlocal impulsive evolution equation","authors":"Weifeng Ma, Yongxiang Li","doi":"10.1515/math-2023-0155","DOIUrl":"https://doi.org/10.1515/math-2023-0155","url":null,"abstract":"In this article, without assuming the compactness of semigroup, we deal with the existence and uniqueness of a mild solution for semilinear impulsive evolution equation with nonlocal condition in a reflexive Banach space by applying the approximate solvability method and Yosida approximations of the infinitesimal generator of <jats:italic>C</jats:italic> <jats:sub>0</jats:sub>-semigroup.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138687482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construction of a functional by a given second-order Ito stochastic equation 通过给定的二阶伊托随机方程构建函数
IF 1.7 4区 数学
Open Mathematics Pub Date : 2023-12-11 DOI: 10.1515/math-2023-0148
Marat Tleubergenov, Gulmira Vassilina, Shakhmira Ismailova
{"title":"Construction of a functional by a given second-order Ito stochastic equation","authors":"Marat Tleubergenov, Gulmira Vassilina, Shakhmira Ismailova","doi":"10.1515/math-2023-0148","DOIUrl":"https://doi.org/10.1515/math-2023-0148","url":null,"abstract":"In this article, we consider the problem of extending Hamilton’s principle to the class of natural mechanical systems with random perturbing forces of white noise type. By the method of moment functions, we construct the functionals taking a stationary value on the solutions of a given stochastic equation of Lagrangian structure.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138575883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The 𝔪-WG° inverse in the Minkowski space 闵科夫斯基空间中的ᵒ-WG°反演
IF 1.7 4区 数学
Open Mathematics Pub Date : 2023-12-08 DOI: 10.1515/math-2023-0145
Xiaoji Liu, Kaiyue Zhang, Hongwei Jin
{"title":"The 𝔪-WG° inverse in the Minkowski space","authors":"Xiaoji Liu, Kaiyue Zhang, Hongwei Jin","doi":"10.1515/math-2023-0145","DOIUrl":"https://doi.org/10.1515/math-2023-0145","url":null,"abstract":"In this article, we study the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0145_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"fraktur\">m</m:mi> </m:math> <jats:tex-math>{mathfrak{m}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-WG<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0145_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow /> <m:mrow> <m:mrow> <m:mo>∘</m:mo> </m:mrow> </m:mrow> </m:msup> </m:math> <jats:tex-math>{}^{circ }</jats:tex-math> </jats:alternatives> </jats:inline-formula> inverse which presents a generalization of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0145_eq_999.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"fraktur\">m</m:mi> </m:math> <jats:tex-math>{mathfrak{m}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-WG inverse in the Minkowski space. We first show the existence and the uniqueness of the generalized inverse. Then, we discuss several properties and characterizations of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0145_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"fraktur\">m</m:mi> </m:math> <jats:tex-math>{mathfrak{m}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-WG<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0145_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow /> <m:mrow> <m:mrow> <m:mo>∘</m:mo> </m:mrow> </m:mrow> </m:msup> </m:math> <jats:tex-math>{}^{circ }</jats:tex-math> </jats:alternatives> </jats:inline-formula> inverse by using the core-EP decomposition. Applying the generalized inverse, we obtain the solutions of some matrix equations in Minkowski space.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138560953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A series expansion of a logarithmic expression and a decreasing property of the ratio of two logarithmic expressions containing cosine 一个对数表达式的级数展开和两个包含余弦的对数表达式之比递减的性质
IF 1.7 4区 数学
Open Mathematics Pub Date : 2023-12-08 DOI: 10.1515/math-2023-0159
Yan-Fang Li, Feng Qi
{"title":"A series expansion of a logarithmic expression and a decreasing property of the ratio of two logarithmic expressions containing cosine","authors":"Yan-Fang Li, Feng Qi","doi":"10.1515/math-2023-0159","DOIUrl":"https://doi.org/10.1515/math-2023-0159","url":null,"abstract":"In this study, by virtue of a derivative formula for the ratio of two differentiable functions and with aid of a monotonicity rule, the authors expand a logarithmic expression involving the cosine function into the Maclaurin power series in terms of specific determinants and prove a decreasing property of the ratio of two logarithmic expressions containing the cosine function.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138560775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability result for Lord Shulman swelling porous thermo-elastic soils with distributed delay term 带有分布式延迟项的 Lord Shulman 膨胀多孔热弹性土的稳定性结果
IF 1.7 4区 数学
Open Mathematics Pub Date : 2023-12-08 DOI: 10.1515/math-2023-0165
Abdelbaki Choucha, Salah Mahmoud Boulaaras, Rashid Jan
{"title":"Stability result for Lord Shulman swelling porous thermo-elastic soils with distributed delay term","authors":"Abdelbaki Choucha, Salah Mahmoud Boulaaras, Rashid Jan","doi":"10.1515/math-2023-0165","DOIUrl":"https://doi.org/10.1515/math-2023-0165","url":null,"abstract":"The Lord Shulman swelling porous thermo-elastic soil system with the presence of a distributed delay term is studied in this work. We will establish the well-posedness of the system and the exponential stability of the system is derived.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138560947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A double-phase eigenvalue problem with large exponents 大指数双相特征值问题
IF 1.7 4区 数学
Open Mathematics Pub Date : 2023-12-06 DOI: 10.1515/math-2023-0138
Lujuan Yu
{"title":"A double-phase eigenvalue problem with large exponents","authors":"Lujuan Yu","doi":"10.1515/math-2023-0138","DOIUrl":"https://doi.org/10.1515/math-2023-0138","url":null,"abstract":"In the present article, we consider a double-phase eigenvalue problem with large exponents. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mi>λ</m:mi> </m:mrow> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>{lambda }_{left({p}_{n},{q}_{n})}^{1}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the first eigenvalues and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{u}_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the first eigenfunctions, normalized by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mo>‖</m:mo> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> <m:mo>‖</m:mo> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi mathvariant=\"script\">ℋ</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math>Vert {u}_{n}{Vert }_{{{mathcal{ {mathcal H} }}}_{n}}=1</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Under some assumptions on the exponents <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{p}_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{q}_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we show that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mr","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138547194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evolutoids and pedaloids of frontals on timelike surfaces 类时间曲面上正面的演化和踏板
IF 1.7 4区 数学
Open Mathematics Pub Date : 2023-12-06 DOI: 10.1515/math-2023-0149
Yongqiao Wang, Lin Yang, Yuan Chang, Haiming Liu
{"title":"Evolutoids and pedaloids of frontals on timelike surfaces","authors":"Yongqiao Wang, Lin Yang, Yuan Chang, Haiming Liu","doi":"10.1515/math-2023-0149","DOIUrl":"https://doi.org/10.1515/math-2023-0149","url":null,"abstract":"In this article, we define evolutoids and pedaloids of frontals on timelike surfaces in Minkowski 3-space. The evolutoids of frontals on timelike surfaces are not only the generalization of evolutoids of curves in the Minkowski plane but also the generalization of caustics in Minkowski 3-space. As an application of the singularity theory, we classify the singularities of evolutoids and reveal the relationships between the singularities and geometric invariants of frontals. Furthermore, we find that there exists a close connection between the pedaloids of frontals and the pedal surfaces of evolutoids. Finally, we give some examples to demonstrate the results.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138547139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the number of perfect matchings in random polygonal chains 论随机多边形链中完全匹配的数量
IF 1.7 4区 数学
Open Mathematics Pub Date : 2023-12-06 DOI: 10.1515/math-2023-0146
Shouliu Wei, Yongde Feng, Xiaoling Ke, Jianwu Huang
{"title":"On the number of perfect matchings in random polygonal chains","authors":"Shouliu Wei, Yongde Feng, Xiaoling Ke, Jianwu Huang","doi":"10.1515/math-2023-0146","DOIUrl":"https://doi.org/10.1515/math-2023-0146","url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0146_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a graph. A perfect matching of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0146_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a regular spanning subgraph of degree one. Enumeration of perfect matchings of a (molecule) graph is interest in chemistry, physics, and mathematics. But the enumeration problem of perfect matchings for general graphs (even in bipartite graphs) is non-deterministic polynomial (NP)-hard. Xiao et al. [C. Xiao, H. Chen, L. Liu, <jats:italic>Perfect matchings in random pentagonal chains</jats:italic>, J. Math. Chem. 55 (2017), 1878–1886] have studied the problem of perfect matchings for random odd-polygonal chain (i.e., with odd polygons). In this article, we further present simple counting formulae for the expected value of the number of perfect matchings in random even-polygonal chains (i.e., with even polygons). Based on these formulae, we obtain the average values of the number for perfect matchings with respect to the set of all even-polygonal chains with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0146_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>n</m:mi> </m:math> <jats:tex-math>n</jats:tex-math> </jats:alternatives> </jats:inline-formula> polygons.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138548569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信