大指数双相特征值问题

IF 1 4区 数学 Q1 MATHEMATICS
Lujuan Yu
{"title":"大指数双相特征值问题","authors":"Lujuan Yu","doi":"10.1515/math-2023-0138","DOIUrl":null,"url":null,"abstract":"In the present article, we consider a double-phase eigenvalue problem with large exponents. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mi>λ</m:mi> </m:mrow> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>{\\lambda }_{\\left({p}_{n},{q}_{n})}^{1}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the first eigenvalues and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{u}_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the first eigenfunctions, normalized by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mo>‖</m:mo> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> <m:mo>‖</m:mo> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi mathvariant=\"script\">ℋ</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math>\\Vert {u}_{n}{\\Vert }_{{{\\mathcal{ {\\mathcal H} }}}_{n}}=1</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Under some assumptions on the exponents <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{p}_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{q}_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we show that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mi>λ</m:mi> </m:mrow> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>{\\lambda }_{\\left({p}_{n},{q}_{n})}^{1}</jats:tex-math> </jats:alternatives> </jats:inline-formula> converges to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_007.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi mathvariant=\"normal\">Λ</m:mi> </m:mrow> <m:mrow> <m:mi>∞</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{\\Lambda }_{\\infty }</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_008.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{u}_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> converges to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_009.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>∞</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{u}_{\\infty }</jats:tex-math> </jats:alternatives> </jats:inline-formula> uniformly in the space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_010.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>C</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{C}^{\\alpha }\\left(\\Omega )</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_011.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>∞</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{u}_{\\infty }</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a nontrivial viscosity solution to a Dirichlet <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_012.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>∞</m:mi> </m:math> <jats:tex-math>\\infty </jats:tex-math> </jats:alternatives> </jats:inline-formula>-Laplacian problem.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"108 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A double-phase eigenvalue problem with large exponents\",\"authors\":\"Lujuan Yu\",\"doi\":\"10.1515/math-2023-0138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present article, we consider a double-phase eigenvalue problem with large exponents. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0138_eq_001.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msubsup> <m:mrow> <m:mi>λ</m:mi> </m:mrow> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>{\\\\lambda }_{\\\\left({p}_{n},{q}_{n})}^{1}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the first eigenvalues and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0138_eq_002.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{u}_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the first eigenfunctions, normalized by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0138_eq_003.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mo>‖</m:mo> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> <m:mo>‖</m:mo> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi mathvariant=\\\"script\\\">ℋ</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math>\\\\Vert {u}_{n}{\\\\Vert }_{{{\\\\mathcal{ {\\\\mathcal H} }}}_{n}}=1</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Under some assumptions on the exponents <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0138_eq_004.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{p}_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0138_eq_005.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{q}_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we show that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0138_eq_006.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msubsup> <m:mrow> <m:mi>λ</m:mi> </m:mrow> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>{\\\\lambda }_{\\\\left({p}_{n},{q}_{n})}^{1}</jats:tex-math> </jats:alternatives> </jats:inline-formula> converges to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0138_eq_007.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Λ</m:mi> </m:mrow> <m:mrow> <m:mi>∞</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{\\\\Lambda }_{\\\\infty }</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0138_eq_008.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{u}_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> converges to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0138_eq_009.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>∞</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{u}_{\\\\infty }</jats:tex-math> </jats:alternatives> </jats:inline-formula> uniformly in the space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0138_eq_010.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi>C</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{C}^{\\\\alpha }\\\\left(\\\\Omega )</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0138_eq_011.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>∞</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{u}_{\\\\infty }</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a nontrivial viscosity solution to a Dirichlet <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0138_eq_012.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>∞</m:mi> </m:math> <jats:tex-math>\\\\infty </jats:tex-math> </jats:alternatives> </jats:inline-formula>-Laplacian problem.\",\"PeriodicalId\":48713,\"journal\":{\"name\":\"Open Mathematics\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2023-0138\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0138","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑一个具有大指数的双相特征值问题。设 λ ( p n , q n ) 1 {\lambda }_{\left({p}_{n},{q}_{n})}^{1} 为第一特征值,u n {u}_{n} 为第一特征函数,归一化为 ‖ u n ‖ ℋ n = 1 \Vert {u}_{n} {}\Vert }_{{\mathcal{ {\mathcal H} }}_{n}}=1 .}}}_{n}}=1 .在对指数 p n {p}_{n} 和 q n {q}_{n} 有一些假设的情况下 我们证明 λ ( p n , q n ) 1 {\lambda }_{left({p}_{n}、{q}_{n})}^{1} 收敛到 Λ ∞ {Lambda }_{infty },并且 u n {u}_{n} 收敛到 u ∞ {u}_{infty },在空间 C α ( Ω ) {C}^{alpha }\left(\Omega ) 中均匀分布、且 u ∞ {u}_{infty } 是一个 Dirichlet ∞ \infty -Laplacian 问题的非微观粘性解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A double-phase eigenvalue problem with large exponents
In the present article, we consider a double-phase eigenvalue problem with large exponents. Let λ ( p n , q n ) 1 {\lambda }_{\left({p}_{n},{q}_{n})}^{1} be the first eigenvalues and u n {u}_{n} be the first eigenfunctions, normalized by u n n = 1 \Vert {u}_{n}{\Vert }_{{{\mathcal{ {\mathcal H} }}}_{n}}=1 . Under some assumptions on the exponents p n {p}_{n} and q n {q}_{n} , we show that λ ( p n , q n ) 1 {\lambda }_{\left({p}_{n},{q}_{n})}^{1} converges to Λ {\Lambda }_{\infty } and u n {u}_{n} converges to u {u}_{\infty } uniformly in the space C α ( Ω ) {C}^{\alpha }\left(\Omega ) , and u {u}_{\infty } is a nontrivial viscosity solution to a Dirichlet \infty -Laplacian problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Mathematics
Open Mathematics MATHEMATICS-
CiteScore
2.40
自引率
5.90%
发文量
67
审稿时长
16 weeks
期刊介绍: Open Mathematics - formerly Central European Journal of Mathematics Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind. Aims and Scope The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信