大指数双相特征值问题

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lujuan Yu
{"title":"大指数双相特征值问题","authors":"Lujuan Yu","doi":"10.1515/math-2023-0138","DOIUrl":null,"url":null,"abstract":"In the present article, we consider a double-phase eigenvalue problem with large exponents. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mi>λ</m:mi> </m:mrow> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>{\\lambda }_{\\left({p}_{n},{q}_{n})}^{1}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the first eigenvalues and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{u}_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the first eigenfunctions, normalized by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mo>‖</m:mo> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> <m:mo>‖</m:mo> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi mathvariant=\"script\">ℋ</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math>\\Vert {u}_{n}{\\Vert }_{{{\\mathcal{ {\\mathcal H} }}}_{n}}=1</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Under some assumptions on the exponents <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{p}_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{q}_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we show that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msubsup> <m:mrow> <m:mi>λ</m:mi> </m:mrow> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>{\\lambda }_{\\left({p}_{n},{q}_{n})}^{1}</jats:tex-math> </jats:alternatives> </jats:inline-formula> converges to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_007.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi mathvariant=\"normal\">Λ</m:mi> </m:mrow> <m:mrow> <m:mi>∞</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{\\Lambda }_{\\infty }</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_008.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{u}_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> converges to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_009.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>∞</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{u}_{\\infty }</jats:tex-math> </jats:alternatives> </jats:inline-formula> uniformly in the space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_010.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi>C</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\"normal\">Ω</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{C}^{\\alpha }\\left(\\Omega )</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_011.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>∞</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{u}_{\\infty }</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a nontrivial viscosity solution to a Dirichlet <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0138_eq_012.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>∞</m:mi> </m:math> <jats:tex-math>\\infty </jats:tex-math> </jats:alternatives> </jats:inline-formula>-Laplacian problem.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A double-phase eigenvalue problem with large exponents\",\"authors\":\"Lujuan Yu\",\"doi\":\"10.1515/math-2023-0138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present article, we consider a double-phase eigenvalue problem with large exponents. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0138_eq_001.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msubsup> <m:mrow> <m:mi>λ</m:mi> </m:mrow> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>{\\\\lambda }_{\\\\left({p}_{n},{q}_{n})}^{1}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the first eigenvalues and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0138_eq_002.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{u}_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> be the first eigenfunctions, normalized by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0138_eq_003.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mo>‖</m:mo> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> <m:mo>‖</m:mo> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi mathvariant=\\\"script\\\">ℋ</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math>\\\\Vert {u}_{n}{\\\\Vert }_{{{\\\\mathcal{ {\\\\mathcal H} }}}_{n}}=1</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Under some assumptions on the exponents <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0138_eq_004.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{p}_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0138_eq_005.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{q}_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, we show that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0138_eq_006.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msubsup> <m:mrow> <m:mi>λ</m:mi> </m:mrow> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>q</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>{\\\\lambda }_{\\\\left({p}_{n},{q}_{n})}^{1}</jats:tex-math> </jats:alternatives> </jats:inline-formula> converges to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0138_eq_007.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Λ</m:mi> </m:mrow> <m:mrow> <m:mi>∞</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{\\\\Lambda }_{\\\\infty }</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0138_eq_008.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{u}_{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> converges to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0138_eq_009.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>∞</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{u}_{\\\\infty }</jats:tex-math> </jats:alternatives> </jats:inline-formula> uniformly in the space <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0138_eq_010.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi>C</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi mathvariant=\\\"normal\\\">Ω</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{C}^{\\\\alpha }\\\\left(\\\\Omega )</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0138_eq_011.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>∞</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{u}_{\\\\infty }</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a nontrivial viscosity solution to a Dirichlet <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0138_eq_012.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>∞</m:mi> </m:math> <jats:tex-math>\\\\infty </jats:tex-math> </jats:alternatives> </jats:inline-formula>-Laplacian problem.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2023-0138\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0138","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑一个具有大指数的双相特征值问题。设 λ ( p n , q n ) 1 {\lambda }_{\left({p}_{n},{q}_{n})}^{1} 为第一特征值,u n {u}_{n} 为第一特征函数,归一化为 ‖ u n ‖ ℋ n = 1 \Vert {u}_{n} {}\Vert }_{{\mathcal{ {\mathcal H} }}_{n}}=1 .}}}_{n}}=1 .在对指数 p n {p}_{n} 和 q n {q}_{n} 有一些假设的情况下 我们证明 λ ( p n , q n ) 1 {\lambda }_{left({p}_{n}、{q}_{n})}^{1} 收敛到 Λ ∞ {Lambda }_{infty },并且 u n {u}_{n} 收敛到 u ∞ {u}_{infty },在空间 C α ( Ω ) {C}^{alpha }\left(\Omega ) 中均匀分布、且 u ∞ {u}_{infty } 是一个 Dirichlet ∞ \infty -Laplacian 问题的非微观粘性解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A double-phase eigenvalue problem with large exponents
In the present article, we consider a double-phase eigenvalue problem with large exponents. Let λ ( p n , q n ) 1 {\lambda }_{\left({p}_{n},{q}_{n})}^{1} be the first eigenvalues and u n {u}_{n} be the first eigenfunctions, normalized by u n n = 1 \Vert {u}_{n}{\Vert }_{{{\mathcal{ {\mathcal H} }}}_{n}}=1 . Under some assumptions on the exponents p n {p}_{n} and q n {q}_{n} , we show that λ ( p n , q n ) 1 {\lambda }_{\left({p}_{n},{q}_{n})}^{1} converges to Λ {\Lambda }_{\infty } and u n {u}_{n} converges to u {u}_{\infty } uniformly in the space C α ( Ω ) {C}^{\alpha }\left(\Omega ) , and u {u}_{\infty } is a nontrivial viscosity solution to a Dirichlet \infty -Laplacian problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信