On the number of perfect matchings in random polygonal chains

IF 1 4区 数学 Q1 MATHEMATICS
Shouliu Wei, Yongde Feng, Xiaoling Ke, Jianwu Huang
{"title":"On the number of perfect matchings in random polygonal chains","authors":"Shouliu Wei, Yongde Feng, Xiaoling Ke, Jianwu Huang","doi":"10.1515/math-2023-0146","DOIUrl":null,"url":null,"abstract":"Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0146_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a graph. A perfect matching of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0146_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a regular spanning subgraph of degree one. Enumeration of perfect matchings of a (molecule) graph is interest in chemistry, physics, and mathematics. But the enumeration problem of perfect matchings for general graphs (even in bipartite graphs) is non-deterministic polynomial (NP)-hard. Xiao et al. [C. Xiao, H. Chen, L. Liu, <jats:italic>Perfect matchings in random pentagonal chains</jats:italic>, J. Math. Chem. 55 (2017), 1878–1886] have studied the problem of perfect matchings for random odd-polygonal chain (i.e., with odd polygons). In this article, we further present simple counting formulae for the expected value of the number of perfect matchings in random even-polygonal chains (i.e., with even polygons). Based on these formulae, we obtain the average values of the number for perfect matchings with respect to the set of all even-polygonal chains with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0146_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>n</m:mi> </m:math> <jats:tex-math>n</jats:tex-math> </jats:alternatives> </jats:inline-formula> polygons.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"109 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0146","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G G be a graph. A perfect matching of G G is a regular spanning subgraph of degree one. Enumeration of perfect matchings of a (molecule) graph is interest in chemistry, physics, and mathematics. But the enumeration problem of perfect matchings for general graphs (even in bipartite graphs) is non-deterministic polynomial (NP)-hard. Xiao et al. [C. Xiao, H. Chen, L. Liu, Perfect matchings in random pentagonal chains, J. Math. Chem. 55 (2017), 1878–1886] have studied the problem of perfect matchings for random odd-polygonal chain (i.e., with odd polygons). In this article, we further present simple counting formulae for the expected value of the number of perfect matchings in random even-polygonal chains (i.e., with even polygons). Based on these formulae, we obtain the average values of the number for perfect matchings with respect to the set of all even-polygonal chains with n n polygons.
论随机多边形链中完全匹配的数量
设 G G 是一个图。G G 的完美匹配是阶数为 1 的正则遍历子图。枚举(分子)图的完全匹配是化学、物理和数学领域的兴趣所在。但对于一般图(即使是二方图)来说,完美匹配的枚举问题是非确定性多项式(NP)困难的。Xiao et al.Xiao, H. Chen, L. Liu, Perfect matchings in random pentagonal chains, J. Math.Chem.55 (2017), 1878-1886] 研究了随机奇多边形链(即奇多边形)的完全匹配问题。在本文中,我们进一步提出了随机偶多边形链(即偶数多边形)中完全匹配次数期望值的简单计数公式。根据这些计算公式,我们可以得到具有 n n 个多边形的所有偶多边形链的完全匹配数的平均值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Mathematics
Open Mathematics MATHEMATICS-
CiteScore
2.40
自引率
5.90%
发文量
67
审稿时长
16 weeks
期刊介绍: Open Mathematics - formerly Central European Journal of Mathematics Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind. Aims and Scope The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信