{"title":"有限区间上五阶 KdV 方程初始边界值问题的全局好求解性","authors":"Xiangqing Zhao, Chengqiang Wang, Jifeng Bao","doi":"10.1515/math-2023-0158","DOIUrl":null,"url":null,"abstract":"We have established the existence and uniqueness of the local solution for <jats:disp-formula> <jats:label>(0.1)</jats:label> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0158_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mfenced open=\"{\" close=\"\"> <m:mrow> <m:mtable displaystyle=\"true\"> <m:mtr> <m:mtd columnalign=\"left\"> <m:msub> <m:mrow> <m:mo>∂</m:mo> </m:mrow> <m:mrow> <m:mi>t</m:mi> </m:mrow> </m:msub> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:msubsup> <m:mrow> <m:mo>∂</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mn>5</m:mn> </m:mrow> </m:msubsup> <m:mi>u</m:mi> <m:mo>−</m:mo> <m:mi>u</m:mi> <m:msub> <m:mrow> <m:mo>∂</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:mtd> <m:mtd columnalign=\"left\"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>x</m:mi> <m:mo><</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mspace width=\"1.0em\" /> <m:mi>t</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>φ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mtd> <m:mtd columnalign=\"left\"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>x</m:mi> <m:mo><</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>h</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>h</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\"0.33em\" /> <m:msub> <m:mrow> <m:mo>∂</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>h</m:mi> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mtd> <m:mtd columnalign=\"left\" /> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:msub> <m:mrow> <m:mo>∂</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>h</m:mi> </m:mrow> <m:mrow> <m:mn>4</m:mn> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\"0.33em\" /> <m:msubsup> <m:mrow> <m:mo>∂</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msubsup> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>h</m:mi> </m:mrow> <m:mrow> <m:mn>5</m:mn> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mtd> <m:mtd columnalign=\"left\"> <m:mi>t</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>\\left\\{\\begin{array}{ll}{\\partial }_{t}u+{\\partial }_{x}^{5}u-u{\\partial }_{x}u=0,& 0\\lt x\\lt 1,\\hspace{1.0em}t\\gt 0,\\\\ u\\left(x,0)=\\varphi \\left(x),& 0\\lt x\\lt 1,\\\\ u\\left(0,t)={h}_{1}\\left(t),u\\left(1,t)={h}_{2}\\left(t),\\hspace{0.33em}{\\partial }_{x}u\\left(1,t)={h}_{3}\\left(t),& \\\\ {\\partial }_{x}u\\left(0,t)={h}_{4}\\left(t),\\hspace{0.33em}{\\partial }_{x}^{2}u\\left(1,t)={h}_{5}\\left(t),& t\\gt 0,\\end{array}\\right.</jats:tex-math> </jats:alternatives> </jats:disp-formula> in the study of Zhao and Zhang [<jats:italic>Non-homogeneous boundary value problem of the fifth-order KdV equations posed on a bounded interval</jats:italic>, J. Math. Anal. Appl. 470 (2019), 251–278]. A question arises naturally: <jats:italic>Can the local solution be extended to a global one?</jats:italic> This article will address this question. First, through a series of logical deductions, a global <jats:italic>a priori</jats:italic> estimate is established, and then the local solution is naturally extended to a global solution.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global well-posedness of initial-boundary value problem of fifth-order KdV equation posed on finite interval\",\"authors\":\"Xiangqing Zhao, Chengqiang Wang, Jifeng Bao\",\"doi\":\"10.1515/math-2023-0158\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We have established the existence and uniqueness of the local solution for <jats:disp-formula> <jats:label>(0.1)</jats:label> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0158_eq_001.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\"> <m:mfenced open=\\\"{\\\" close=\\\"\\\"> <m:mrow> <m:mtable displaystyle=\\\"true\\\"> <m:mtr> <m:mtd columnalign=\\\"left\\\"> <m:msub> <m:mrow> <m:mo>∂</m:mo> </m:mrow> <m:mrow> <m:mi>t</m:mi> </m:mrow> </m:msub> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:msubsup> <m:mrow> <m:mo>∂</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mn>5</m:mn> </m:mrow> </m:msubsup> <m:mi>u</m:mi> <m:mo>−</m:mo> <m:mi>u</m:mi> <m:msub> <m:mrow> <m:mo>∂</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>x</m:mi> <m:mo><</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mspace width=\\\"1.0em\\\" /> <m:mi>t</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"left\\\"> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>φ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mn>0</m:mn> <m:mo><</m:mo> <m:mi>x</m:mi> <m:mo><</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"left\\\"> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>h</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>h</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\\\"0.33em\\\" /> <m:msub> <m:mrow> <m:mo>∂</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>h</m:mi> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mtd> <m:mtd columnalign=\\\"left\\\" /> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"left\\\"> <m:msub> <m:mrow> <m:mo>∂</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>h</m:mi> </m:mrow> <m:mrow> <m:mn>4</m:mn> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\\\"0.33em\\\" /> <m:msubsup> <m:mrow> <m:mo>∂</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msubsup> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>h</m:mi> </m:mrow> <m:mrow> <m:mn>5</m:mn> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mi>t</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>\\\\left\\\\{\\\\begin{array}{ll}{\\\\partial }_{t}u+{\\\\partial }_{x}^{5}u-u{\\\\partial }_{x}u=0,& 0\\\\lt x\\\\lt 1,\\\\hspace{1.0em}t\\\\gt 0,\\\\\\\\ u\\\\left(x,0)=\\\\varphi \\\\left(x),& 0\\\\lt x\\\\lt 1,\\\\\\\\ u\\\\left(0,t)={h}_{1}\\\\left(t),u\\\\left(1,t)={h}_{2}\\\\left(t),\\\\hspace{0.33em}{\\\\partial }_{x}u\\\\left(1,t)={h}_{3}\\\\left(t),& \\\\\\\\ {\\\\partial }_{x}u\\\\left(0,t)={h}_{4}\\\\left(t),\\\\hspace{0.33em}{\\\\partial }_{x}^{2}u\\\\left(1,t)={h}_{5}\\\\left(t),& t\\\\gt 0,\\\\end{array}\\\\right.</jats:tex-math> </jats:alternatives> </jats:disp-formula> in the study of Zhao and Zhang [<jats:italic>Non-homogeneous boundary value problem of the fifth-order KdV equations posed on a bounded interval</jats:italic>, J. Math. Anal. Appl. 470 (2019), 251–278]. A question arises naturally: <jats:italic>Can the local solution be extended to a global one?</jats:italic> This article will address this question. First, through a series of logical deductions, a global <jats:italic>a priori</jats:italic> estimate is established, and then the local solution is naturally extended to a global solution.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2023-0158\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0158","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们已经确定了 (0) 的局部解的存在性和唯一性。1) ∂ t u + ∂ x 5 u - u ∂ x u = 0 , 0 < x < 1 , t > 0 , u ( x , 0 ) = φ ( x ) , 0 < x <;1 , u ( 0 , t ) = h 1 ( t ) , u ( 1 , t ) = h 2 ( t ) , ∂ x u ( 1 , t ) = h 3 ( t ) , ∂ x u ( 0 , t ) = h 4 ( t ) , ∂ x 2 u ( 1 , t ) = h 5 ( t ) , t >;0 ,left\{begin{array}{ll}{\partial }_{t}u+{\partial }_{x}^{5}u-u{\partial }_{x}u=0,& 0\lt x\lt 1,\hspace{1.0lt x\lt 1,u\left(0,t)={h}_{1}\left(t),u\left(1,t)={h}_{2}\left(t),\hspace{0.33em} {\partial }_{x}u\left(1,t)={h}_{3}\left(t),&\ {\partial }_{x}u\left(0,t)={h}_{4}\left(t),\hspace{0.33em}{partial }_{x}^{2}u\left(1,t)={h}_{5}\left(t),& t\gt 0,\end{array}\right. in the study of Zhao and Zhang [Non-homogeneous boundary value problem of the fifth-order KdV equations posed on a bounded interval, J. Math.Anal.Appl. 470 (2019),251-278]。一个问题自然而然地产生了:局部解能否扩展为全局解?本文将探讨这个问题。首先,通过一系列逻辑推导,建立一个全局先验估计,然后将局部解自然扩展为全局解。
Global well-posedness of initial-boundary value problem of fifth-order KdV equation posed on finite interval
We have established the existence and uniqueness of the local solution for (0.1)∂tu+∂x5u−u∂xu=0,0<x<1,t>0,u(x,0)=φ(x),0<x<1,u(0,t)=h1(t),u(1,t)=h2(t),∂xu(1,t)=h3(t),∂xu(0,t)=h4(t),∂x2u(1,t)=h5(t),t>0,\left\{\begin{array}{ll}{\partial }_{t}u+{\partial }_{x}^{5}u-u{\partial }_{x}u=0,& 0\lt x\lt 1,\hspace{1.0em}t\gt 0,\\ u\left(x,0)=\varphi \left(x),& 0\lt x\lt 1,\\ u\left(0,t)={h}_{1}\left(t),u\left(1,t)={h}_{2}\left(t),\hspace{0.33em}{\partial }_{x}u\left(1,t)={h}_{3}\left(t),& \\ {\partial }_{x}u\left(0,t)={h}_{4}\left(t),\hspace{0.33em}{\partial }_{x}^{2}u\left(1,t)={h}_{5}\left(t),& t\gt 0,\end{array}\right. in the study of Zhao and Zhang [Non-homogeneous boundary value problem of the fifth-order KdV equations posed on a bounded interval, J. Math. Anal. Appl. 470 (2019), 251–278]. A question arises naturally: Can the local solution be extended to a global one? This article will address this question. First, through a series of logical deductions, a global a priori estimate is established, and then the local solution is naturally extended to a global solution.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.