Global well-posedness of initial-boundary value problem of fifth-order KdV equation posed on finite interval

IF 1 4区 数学 Q1 MATHEMATICS
Xiangqing Zhao, Chengqiang Wang, Jifeng Bao
{"title":"Global well-posedness of initial-boundary value problem of fifth-order KdV equation posed on finite interval","authors":"Xiangqing Zhao, Chengqiang Wang, Jifeng Bao","doi":"10.1515/math-2023-0158","DOIUrl":null,"url":null,"abstract":"We have established the existence and uniqueness of the local solution for <jats:disp-formula> <jats:label>(0.1)</jats:label> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0158_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mfenced open=\"{\" close=\"\"> <m:mrow> <m:mtable displaystyle=\"true\"> <m:mtr> <m:mtd columnalign=\"left\"> <m:msub> <m:mrow> <m:mo>∂</m:mo> </m:mrow> <m:mrow> <m:mi>t</m:mi> </m:mrow> </m:msub> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:msubsup> <m:mrow> <m:mo>∂</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mn>5</m:mn> </m:mrow> </m:msubsup> <m:mi>u</m:mi> <m:mo>−</m:mo> <m:mi>u</m:mi> <m:msub> <m:mrow> <m:mo>∂</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:mtd> <m:mtd columnalign=\"left\"> <m:mn>0</m:mn> <m:mo>&lt;</m:mo> <m:mi>x</m:mi> <m:mo>&lt;</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mspace width=\"1.0em\" /> <m:mi>t</m:mi> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> <m:mo>,</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mi>φ</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mtd> <m:mtd columnalign=\"left\"> <m:mn>0</m:mn> <m:mo>&lt;</m:mo> <m:mi>x</m:mi> <m:mo>&lt;</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>h</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>h</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\"0.33em\" /> <m:msub> <m:mrow> <m:mo>∂</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>h</m:mi> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mtd> <m:mtd columnalign=\"left\" /> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:msub> <m:mrow> <m:mo>∂</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> </m:msub> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>h</m:mi> </m:mrow> <m:mrow> <m:mn>4</m:mn> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:mspace width=\"0.33em\" /> <m:msubsup> <m:mrow> <m:mo>∂</m:mo> </m:mrow> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msubsup> <m:mi>u</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>h</m:mi> </m:mrow> <m:mrow> <m:mn>5</m:mn> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>t</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> </m:mtd> <m:mtd columnalign=\"left\"> <m:mi>t</m:mi> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>\\left\\{\\begin{array}{ll}{\\partial }_{t}u+{\\partial }_{x}^{5}u-u{\\partial }_{x}u=0,&amp; 0\\lt x\\lt 1,\\hspace{1.0em}t\\gt 0,\\\\ u\\left(x,0)=\\varphi \\left(x),&amp; 0\\lt x\\lt 1,\\\\ u\\left(0,t)={h}_{1}\\left(t),u\\left(1,t)={h}_{2}\\left(t),\\hspace{0.33em}{\\partial }_{x}u\\left(1,t)={h}_{3}\\left(t),&amp; \\\\ {\\partial }_{x}u\\left(0,t)={h}_{4}\\left(t),\\hspace{0.33em}{\\partial }_{x}^{2}u\\left(1,t)={h}_{5}\\left(t),&amp; t\\gt 0,\\end{array}\\right.</jats:tex-math> </jats:alternatives> </jats:disp-formula> in the study of Zhao and Zhang [<jats:italic>Non-homogeneous boundary value problem of the fifth-order KdV equations posed on a bounded interval</jats:italic>, J. Math. Anal. Appl. 470 (2019), 251–278]. A question arises naturally: <jats:italic>Can the local solution be extended to a global one?</jats:italic> This article will address this question. First, through a series of logical deductions, a global <jats:italic>a priori</jats:italic> estimate is established, and then the local solution is naturally extended to a global solution.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"131 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0158","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We have established the existence and uniqueness of the local solution for (0.1) t u + x 5 u u x u = 0 , 0 < x < 1 , t > 0 , u ( x , 0 ) = φ ( x ) , 0 < x < 1 , u ( 0 , t ) = h 1 ( t ) , u ( 1 , t ) = h 2 ( t ) , x u ( 1 , t ) = h 3 ( t ) , x u ( 0 , t ) = h 4 ( t ) , x 2 u ( 1 , t ) = h 5 ( t ) , t > 0 , \left\{\begin{array}{ll}{\partial }_{t}u+{\partial }_{x}^{5}u-u{\partial }_{x}u=0,& 0\lt x\lt 1,\hspace{1.0em}t\gt 0,\\ u\left(x,0)=\varphi \left(x),& 0\lt x\lt 1,\\ u\left(0,t)={h}_{1}\left(t),u\left(1,t)={h}_{2}\left(t),\hspace{0.33em}{\partial }_{x}u\left(1,t)={h}_{3}\left(t),& \\ {\partial }_{x}u\left(0,t)={h}_{4}\left(t),\hspace{0.33em}{\partial }_{x}^{2}u\left(1,t)={h}_{5}\left(t),& t\gt 0,\end{array}\right. in the study of Zhao and Zhang [Non-homogeneous boundary value problem of the fifth-order KdV equations posed on a bounded interval, J. Math. Anal. Appl. 470 (2019), 251–278]. A question arises naturally: Can the local solution be extended to a global one? This article will address this question. First, through a series of logical deductions, a global a priori estimate is established, and then the local solution is naturally extended to a global solution.
有限区间上五阶 KdV 方程初始边界值问题的全局好求解性
我们已经确定了 (0) 的局部解的存在性和唯一性。1) ∂ t u + ∂ x 5 u - u ∂ x u = 0 , 0 < x < 1 , t > 0 , u ( x , 0 ) = φ ( x ) , 0 < x <;1 , u ( 0 , t ) = h 1 ( t ) , u ( 1 , t ) = h 2 ( t ) , ∂ x u ( 1 , t ) = h 3 ( t ) , ∂ x u ( 0 , t ) = h 4 ( t ) , ∂ x 2 u ( 1 , t ) = h 5 ( t ) , t >;0 ,left\{begin{array}{ll}{\partial }_{t}u+{\partial }_{x}^{5}u-u{\partial }_{x}u=0,& 0\lt x\lt 1,\hspace{1.0lt x\lt 1,u\left(0,t)={h}_{1}\left(t),u\left(1,t)={h}_{2}\left(t),\hspace{0.33em} {\partial }_{x}u\left(1,t)={h}_{3}\left(t),&\ {\partial }_{x}u\left(0,t)={h}_{4}\left(t),\hspace{0.33em}{partial }_{x}^{2}u\left(1,t)={h}_{5}\left(t),& t\gt 0,\end{array}\right. in the study of Zhao and Zhang [Non-homogeneous boundary value problem of the fifth-order KdV equations posed on a bounded interval, J. Math.Anal.Appl. 470 (2019),251-278]。一个问题自然而然地产生了:局部解能否扩展为全局解?本文将探讨这个问题。首先,通过一系列逻辑推导,建立一个全局先验估计,然后将局部解自然扩展为全局解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Mathematics
Open Mathematics MATHEMATICS-
CiteScore
2.40
自引率
5.90%
发文量
67
审稿时长
16 weeks
期刊介绍: Open Mathematics - formerly Central European Journal of Mathematics Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind. Aims and Scope The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信