{"title":"闵科夫斯基空间中的ᵒ-WG°反演","authors":"Xiaoji Liu, Kaiyue Zhang, Hongwei Jin","doi":"10.1515/math-2023-0145","DOIUrl":null,"url":null,"abstract":"In this article, we study the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0145_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"fraktur\">m</m:mi> </m:math> <jats:tex-math>{\\mathfrak{m}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-WG<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0145_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow /> <m:mrow> <m:mrow> <m:mo>∘</m:mo> </m:mrow> </m:mrow> </m:msup> </m:math> <jats:tex-math>{}^{\\circ }</jats:tex-math> </jats:alternatives> </jats:inline-formula> inverse which presents a generalization of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0145_eq_999.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"fraktur\">m</m:mi> </m:math> <jats:tex-math>{\\mathfrak{m}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-WG inverse in the Minkowski space. We first show the existence and the uniqueness of the generalized inverse. Then, we discuss several properties and characterizations of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0145_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"fraktur\">m</m:mi> </m:math> <jats:tex-math>{\\mathfrak{m}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-WG<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0145_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow /> <m:mrow> <m:mrow> <m:mo>∘</m:mo> </m:mrow> </m:mrow> </m:msup> </m:math> <jats:tex-math>{}^{\\circ }</jats:tex-math> </jats:alternatives> </jats:inline-formula> inverse by using the core-EP decomposition. Applying the generalized inverse, we obtain the solutions of some matrix equations in Minkowski space.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"18 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The 𝔪-WG° inverse in the Minkowski space\",\"authors\":\"Xiaoji Liu, Kaiyue Zhang, Hongwei Jin\",\"doi\":\"10.1515/math-2023-0145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we study the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0145_eq_001.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"fraktur\\\">m</m:mi> </m:math> <jats:tex-math>{\\\\mathfrak{m}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-WG<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0145_eq_002.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow /> <m:mrow> <m:mrow> <m:mo>∘</m:mo> </m:mrow> </m:mrow> </m:msup> </m:math> <jats:tex-math>{}^{\\\\circ }</jats:tex-math> </jats:alternatives> </jats:inline-formula> inverse which presents a generalization of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0145_eq_999.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"fraktur\\\">m</m:mi> </m:math> <jats:tex-math>{\\\\mathfrak{m}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-WG inverse in the Minkowski space. We first show the existence and the uniqueness of the generalized inverse. Then, we discuss several properties and characterizations of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0145_eq_003.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"fraktur\\\">m</m:mi> </m:math> <jats:tex-math>{\\\\mathfrak{m}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-WG<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0145_eq_004.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow /> <m:mrow> <m:mrow> <m:mo>∘</m:mo> </m:mrow> </m:mrow> </m:msup> </m:math> <jats:tex-math>{}^{\\\\circ }</jats:tex-math> </jats:alternatives> </jats:inline-formula> inverse by using the core-EP decomposition. Applying the generalized inverse, we obtain the solutions of some matrix equations in Minkowski space.\",\"PeriodicalId\":48713,\"journal\":{\"name\":\"Open Mathematics\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2023-0145\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0145","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们研究了 m {\mathfrak{m}} -WG ∘ {}^{circ } 逆,它是 m {\mathfrak{m}} 的广义化。 -WG 在闵科夫斯基空间中的逆。我们首先证明了广义逆的存在性和唯一性。然后,我们讨论了 m {\mathfrak{m}} -WG ˲Sm_2F2} 的几个性质和特征。 -WG ∘ {}^{circ }逆的几个性质和特征。应用广义逆,我们得到了闵科夫斯基空间中一些矩阵方程的解。
In this article, we study the m{\mathfrak{m}}-WG∘{}^{\circ } inverse which presents a generalization of the m{\mathfrak{m}}-WG inverse in the Minkowski space. We first show the existence and the uniqueness of the generalized inverse. Then, we discuss several properties and characterizations of the m{\mathfrak{m}}-WG∘{}^{\circ } inverse by using the core-EP decomposition. Applying the generalized inverse, we obtain the solutions of some matrix equations in Minkowski space.
期刊介绍:
Open Mathematics - formerly Central European Journal of Mathematics
Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.
Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.
Aims and Scope
The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes: