论正集部分变换的 "π"(pomonoid)

IF 1 4区 数学 Q1 MATHEMATICS
Bana Al Subaiei
{"title":"论正集部分变换的 \"π\"(pomonoid)","authors":"Bana Al Subaiei","doi":"10.1515/math-2023-0161","DOIUrl":null,"url":null,"abstract":"The main objective of this article is to study the ordered partial transformations <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0161_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">PO</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{\\mathcal{PO}}\\left(X)</jats:tex-math> </jats:alternatives> </jats:inline-formula> of a poset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0161_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The findings show that the set of all partial transformations of a poset with a pointwise order is not necessarily a pomonoid. Some conditions are implemented to guarantee that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0161_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"script\">PO</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{\\mathcal{PO}}\\left(X)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a pomonoid and this pomonoid is denoted by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0161_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"script\">PO</m:mi> </m:mrow> <m:mrow> <m:mi>↑</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{{\\mathcal{PO}}}^{\\uparrow }\\left(X)</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Moreover, we determine the necessary conditions in order that the partial order-embedding transformations define the ordered version of the symmetric inverse monoid. The findings show that this set is an inverse pomonoid and we will denote it by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0161_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"script\">ℐPO</m:mi> </m:mrow> <m:mrow> <m:mi>↑</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{{\\mathcal{ {\\mathcal I} PO}}}^{\\uparrow }\\left(X)</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In case the order on the poset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0161_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula> is total, we explore some properties of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0161_eq_007.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"script\">PO</m:mi> </m:mrow> <m:mrow> <m:mi>↑</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{{\\mathcal{PO}}}^{\\uparrow }\\left(X)</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0161_eq_008.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"script\">ℐPO</m:mi> </m:mrow> <m:mrow> <m:mi>↑</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{{\\mathcal{ {\\mathcal I} PO}}}^{\\uparrow }\\left(X)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, including regressive, unitary, and reversible.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"25 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On pomonoid of partial transformations of a poset\",\"authors\":\"Bana Al Subaiei\",\"doi\":\"10.1515/math-2023-0161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main objective of this article is to study the ordered partial transformations <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0161_eq_001.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">PO</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{\\\\mathcal{PO}}\\\\left(X)</jats:tex-math> </jats:alternatives> </jats:inline-formula> of a poset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0161_eq_002.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The findings show that the set of all partial transformations of a poset with a pointwise order is not necessarily a pomonoid. Some conditions are implemented to guarantee that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0161_eq_003.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"script\\\">PO</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{\\\\mathcal{PO}}\\\\left(X)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a pomonoid and this pomonoid is denoted by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0161_eq_004.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"script\\\">PO</m:mi> </m:mrow> <m:mrow> <m:mi>↑</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{{\\\\mathcal{PO}}}^{\\\\uparrow }\\\\left(X)</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Moreover, we determine the necessary conditions in order that the partial order-embedding transformations define the ordered version of the symmetric inverse monoid. The findings show that this set is an inverse pomonoid and we will denote it by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0161_eq_005.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"script\\\">ℐPO</m:mi> </m:mrow> <m:mrow> <m:mi>↑</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{{\\\\mathcal{ {\\\\mathcal I} PO}}}^{\\\\uparrow }\\\\left(X)</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In case the order on the poset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0161_eq_006.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula> is total, we explore some properties of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0161_eq_007.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"script\\\">PO</m:mi> </m:mrow> <m:mrow> <m:mi>↑</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{{\\\\mathcal{PO}}}^{\\\\uparrow }\\\\left(X)</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0161_eq_008.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"script\\\">ℐPO</m:mi> </m:mrow> <m:mrow> <m:mi>↑</m:mi> </m:mrow> </m:msup> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>X</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{{\\\\mathcal{ {\\\\mathcal I} PO}}}^{\\\\uparrow }\\\\left(X)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, including regressive, unitary, and reversible.\",\"PeriodicalId\":48713,\"journal\":{\"name\":\"Open Mathematics\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2023-0161\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0161","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文的主要目的是研究正集 X X 的有序部分变换 PO ( X ) {\mathcal{PO}}\left(X) 。研究结果表明,poset 的所有有序部分变换的集合并不一定是一个 pomonoid。我们提出了一些条件来保证 PO ( X ) {\mathcal{PO}}\left(X) 是一个 pomonoid,这个 pomonoid 用 PO ↑ ( X ) {{mathcal{PO}}^{\uparrow }\left(X) 表示。此外,我们还确定了一些必要条件,以使部分有序嵌入变换定义对称逆单元的有序版本。研究结果表明,这个集合是一个逆单元集,我们将用ℐPO ↑ ( X ) {{\mathcal{ {\mathcal I} PO}}^{\uparrow }\left(X) 来表示它。如果集合 X X 上的阶是全阶,我们将探讨 PO ↑ ( X ) {{\mathcal{PO}}^{\uparrow }/left(X)和ℐPO ↑ ( X ) {{\mathcal{ {\mathcal I} PO}}^{\uparrow }/left(X)的一些性质,包括回归性、单一性和可逆性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On pomonoid of partial transformations of a poset
The main objective of this article is to study the ordered partial transformations PO ( X ) {\mathcal{PO}}\left(X) of a poset X X . The findings show that the set of all partial transformations of a poset with a pointwise order is not necessarily a pomonoid. Some conditions are implemented to guarantee that PO ( X ) {\mathcal{PO}}\left(X) is a pomonoid and this pomonoid is denoted by PO ( X ) {{\mathcal{PO}}}^{\uparrow }\left(X) . Moreover, we determine the necessary conditions in order that the partial order-embedding transformations define the ordered version of the symmetric inverse monoid. The findings show that this set is an inverse pomonoid and we will denote it by ℐPO ( X ) {{\mathcal{ {\mathcal I} PO}}}^{\uparrow }\left(X) . In case the order on the poset X X is total, we explore some properties of PO ( X ) {{\mathcal{PO}}}^{\uparrow }\left(X) and ℐPO ( X ) {{\mathcal{ {\mathcal I} PO}}}^{\uparrow }\left(X) , including regressive, unitary, and reversible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Mathematics
Open Mathematics MATHEMATICS-
CiteScore
2.40
自引率
5.90%
发文量
67
审稿时长
16 weeks
期刊介绍: Open Mathematics - formerly Central European Journal of Mathematics Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind. Aims and Scope The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信