Local and global solvability for the Boussinesq system in Besov spaces
IF 1
4区 数学
Q1 MATHEMATICS
Shuokai Yan, Lu Wang, Qinghua Zhang
求助PDF
{"title":"Local and global solvability for the Boussinesq system in Besov spaces","authors":"Shuokai Yan, Lu Wang, Qinghua Zhang","doi":"10.1515/math-2023-0182","DOIUrl":null,"url":null,"abstract":"This article focuses on local and global existence and uniqueness for the strong solution to the Boussinesq system in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\mathbb{R}}}^{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:math> <jats:tex-math>n\\ge 3</jats:tex-math> </jats:alternatives> </jats:inline-formula>) with full viscosity in Besov spaces. Under the hypotheses <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>1</m:mn> <m:mo><</m:mo> <m:mi>p</m:mi> <m:mo><</m:mo> <m:mi>∞</m:mi> </m:math> <jats:tex-math>1\\lt p\\lt \\infty </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>−</m:mo> <m:mi>min</m:mi> <m:mrow> <m:mo>{</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>2</m:mn> <m:mo>−</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> </m:mrow> <m:mo>}</m:mo> </m:mrow> <m:mo><</m:mo> <m:mi>s</m:mi> <m:mo>≤</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> </m:math> <jats:tex-math>-\\min \\left\\{n/p,2-n/p\\right\\}\\lt s\\le n/p</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the initial condition <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>θ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:msubsup> <m:mrow> <m:mover accent=\"true\"> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:mrow> <m:mo>˙</m:mo> </m:mrow> </m:mover> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>s</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mo>×</m:mo> <m:msubsup> <m:mrow> <m:mover accent=\"true\"> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:mrow> <m:mo>˙</m:mo> </m:mrow> </m:mover> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>\\left({\\theta }_{0},{u}_{0})\\in {\\dot{B}}_{p,1}^{s-1}\\times {\\dot{B}}_{p,1}^{n/p-1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the Boussinesq system is proved to have a unique local strong solution. Under the hypotheses <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>n</m:mi> <m:mo>≤</m:mo> <m:mi>p</m:mi> <m:mo><</m:mo> <m:mi>∞</m:mi> </m:math> <jats:tex-math>n\\le p\\lt \\infty </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_007.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>−</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo><</m:mo> <m:mi>s</m:mi> <m:mo>≤</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> </m:math> <jats:tex-math>-n/p\\lt s\\le n/p</jats:tex-math> </jats:alternatives> </jats:inline-formula>, or especially <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_008.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>n</m:mi> <m:mo>≤</m:mo> <m:mi>p</m:mi> <m:mo><</m:mo> <m:mn>2</m:mn> <m:mi>n</m:mi> </m:math> <jats:tex-math>n\\le p\\lt 2n</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_009.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>−</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo><</m:mo> <m:mi>s</m:mi> <m:mo><</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math>-n/p\\lt s\\lt n/p-1</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the initial condition <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_010.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>θ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msubsup> <m:mrow> <m:mover accent=\"true\"> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:mrow> <m:mo>˙</m:mo> </m:mrow> </m:mover> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>s</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mo>∩</m:mo> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mn>3</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>×</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msubsup> <m:mrow> <m:mover accent=\"true\"> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:mrow> <m:mo>˙</m:mo> </m:mrow> </m:mover> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mo>∩</m:mo> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left({\\theta }_{0},{u}_{0})\\in \\left({\\dot{B}}_{p,1}^{s-1}\\cap {L}^{n/3})\\times \\left({\\dot{B}}_{p,1}^{n/p-1}\\cap {L}^{n})</jats:tex-math> </jats:alternatives> </jats:inline-formula> with sufficiently small norms <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_011.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mo>‖</m:mo> <m:msub> <m:mrow> <m:mi>θ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>‖</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mn>3</m:mn> </m:mrow> </m:msup> </m:mrow> </m:msub> </m:math> <jats:tex-math>{\\Vert {\\theta }_{0}\\Vert }_{{L}^{n/3}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_012.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mo>‖</m:mo> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>‖</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:mrow> </m:msub> </m:math> <jats:tex-math>{\\Vert {u}_{0}\\Vert }_{{L}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the Boussinesq system is proved to have a unique global strong solution.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"11 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0182","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
This article focuses on local and global existence and uniqueness for the strong solution to the Boussinesq system in R n {{\mathbb{R}}}^{n} ( n ≥ 3 n\ge 3 ) with full viscosity in Besov spaces. Under the hypotheses 1 < p < ∞ 1\lt p\lt \infty and − min { n ∕ p , 2 − n ∕ p } < s ≤ n ∕ p -\min \left\{n/p,2-n/p\right\}\lt s\le n/p , and the initial condition ( θ 0 , u 0 ) ∈ B ˙ p , 1 s − 1 × B ˙ p , 1 n ∕ p − 1 \left({\theta }_{0},{u}_{0})\in {\dot{B}}_{p,1}^{s-1}\times {\dot{B}}_{p,1}^{n/p-1} , the Boussinesq system is proved to have a unique local strong solution. Under the hypotheses n ≤ p < ∞ n\le p\lt \infty and − n ∕ p < s ≤ n ∕ p -n/p\lt s\le n/p , or especially n ≤ p < 2 n n\le p\lt 2n and − n ∕ p < s < n ∕ p − 1 -n/p\lt s\lt n/p-1 , and the initial condition ( θ 0 , u 0 ) ∈ ( B ˙ p , 1 s − 1 ∩ L n ∕ 3 ) × ( B ˙ p , 1 n ∕ p − 1 ∩ L n ) \left({\theta }_{0},{u}_{0})\in \left({\dot{B}}_{p,1}^{s-1}\cap {L}^{n/3})\times \left({\dot{B}}_{p,1}^{n/p-1}\cap {L}^{n}) with sufficiently small norms ‖ θ 0 ‖ L n ∕ 3 {\Vert {\theta }_{0}\Vert }_{{L}^{n/3}} and ‖ u 0 ‖ L n {\Vert {u}_{0}\Vert }_{{L}^{n}} , the Boussinesq system is proved to have a unique global strong solution.
贝索夫空间中布西尼斯克系统的局部和全局可解性
本文主要研究在贝索夫空间中,R n {{mathbb{R}}}^{n} ( n ≥ 3 n\ge 3 ) 中具有全粘性的布森斯克系统强解的局部和全局存在性与唯一性。在假设 1 < p < ∞ 1\lt p\lt \infty 和 - min { n ∕ p , 2 - n ∕ p } <;s ≤ n ∕ p -min left\{n/p,2-n/p\lt s\le n/p , 和初始条件 ( θ 0 , u 0 ) ∈ B ˙ p , 1 s - 1 × B ˙ p 、1 n ∕ p - 1 \left({\theta }_{0},{u}_{0})\in {\dot{B}}_{p,1}^{s-1}\times {\dot{B}}_{p,1}^{n/p-1}, 证明布西尼斯克系统有唯一的局部强解。在 n ≤ p < ∞ n\le p\lt \infty 和 - n ∕ p < s ≤ n ∕ p -n/p\lt s\le n/p 的假设条件下,或者特别是 n ≤ p < 2 n n\le p\lt 2n 和 - n ∕ p < s <;n ∕ p - 1 -n/p\lt s\lt n/p-1 ,初始条件 ( θ 0 , u 0 ) ∈ ( B ˙ p 、1 s - 1 ∩ L n ∕ 3 ) × ( B ˙ p , 1 n ∕ p - 1 ∩ L n ) \left({\theta }_{0},{u}_{0})\in \left({\dot{B}}_{p、1}^{s-1}\cap {L}^{n/3})\times \left({\dot{B}}_{p、1}^{n/p-1}\cap {L}^{n}) 具有足够小的规范‖ θ 0 ‖ L n ∕ 3 {Vert {\theta }_{0}\Vert }_{{L}^{n/3}} 和‖ u 0 ‖ L n {Vert {u}_{0}\Vert }_{{L}^{n}} 。 证明布辛斯方程组有唯一的全局强解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
来源期刊
期刊介绍:
Open Mathematics - formerly Central European Journal of Mathematics
Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.
Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.
Aims and Scope
The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes: