贝索夫空间中布西尼斯克系统的局部和全局可解性

IF 1 4区 数学 Q1 MATHEMATICS
Shuokai Yan, Lu Wang, Qinghua Zhang
{"title":"贝索夫空间中布西尼斯克系统的局部和全局可解性","authors":"Shuokai Yan, Lu Wang, Qinghua Zhang","doi":"10.1515/math-2023-0182","DOIUrl":null,"url":null,"abstract":"This article focuses on local and global existence and uniqueness for the strong solution to the Boussinesq system in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\mathbb{R}}}^{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:math> <jats:tex-math>n\\ge 3</jats:tex-math> </jats:alternatives> </jats:inline-formula>) with full viscosity in Besov spaces. Under the hypotheses <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>1</m:mn> <m:mo>&lt;</m:mo> <m:mi>p</m:mi> <m:mo>&lt;</m:mo> <m:mi>∞</m:mi> </m:math> <jats:tex-math>1\\lt p\\lt \\infty </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>−</m:mo> <m:mi>min</m:mi> <m:mrow> <m:mo>{</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>2</m:mn> <m:mo>−</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> </m:mrow> <m:mo>}</m:mo> </m:mrow> <m:mo>&lt;</m:mo> <m:mi>s</m:mi> <m:mo>≤</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> </m:math> <jats:tex-math>-\\min \\left\\{n/p,2-n/p\\right\\}\\lt s\\le n/p</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the initial condition <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>θ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:msubsup> <m:mrow> <m:mover accent=\"true\"> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:mrow> <m:mo>˙</m:mo> </m:mrow> </m:mover> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>s</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mo>×</m:mo> <m:msubsup> <m:mrow> <m:mover accent=\"true\"> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:mrow> <m:mo>˙</m:mo> </m:mrow> </m:mover> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>\\left({\\theta }_{0},{u}_{0})\\in {\\dot{B}}_{p,1}^{s-1}\\times {\\dot{B}}_{p,1}^{n/p-1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the Boussinesq system is proved to have a unique local strong solution. Under the hypotheses <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>n</m:mi> <m:mo>≤</m:mo> <m:mi>p</m:mi> <m:mo>&lt;</m:mo> <m:mi>∞</m:mi> </m:math> <jats:tex-math>n\\le p\\lt \\infty </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_007.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>−</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo>&lt;</m:mo> <m:mi>s</m:mi> <m:mo>≤</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> </m:math> <jats:tex-math>-n/p\\lt s\\le n/p</jats:tex-math> </jats:alternatives> </jats:inline-formula>, or especially <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_008.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>n</m:mi> <m:mo>≤</m:mo> <m:mi>p</m:mi> <m:mo>&lt;</m:mo> <m:mn>2</m:mn> <m:mi>n</m:mi> </m:math> <jats:tex-math>n\\le p\\lt 2n</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_009.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>−</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo>&lt;</m:mo> <m:mi>s</m:mi> <m:mo>&lt;</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math>-n/p\\lt s\\lt n/p-1</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the initial condition <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_010.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>θ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msubsup> <m:mrow> <m:mover accent=\"true\"> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:mrow> <m:mo>˙</m:mo> </m:mrow> </m:mover> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>s</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mo>∩</m:mo> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mn>3</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>×</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msubsup> <m:mrow> <m:mover accent=\"true\"> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:mrow> <m:mo>˙</m:mo> </m:mrow> </m:mover> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mo>∩</m:mo> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left({\\theta }_{0},{u}_{0})\\in \\left({\\dot{B}}_{p,1}^{s-1}\\cap {L}^{n/3})\\times \\left({\\dot{B}}_{p,1}^{n/p-1}\\cap {L}^{n})</jats:tex-math> </jats:alternatives> </jats:inline-formula> with sufficiently small norms <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_011.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mo>‖</m:mo> <m:msub> <m:mrow> <m:mi>θ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>‖</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mn>3</m:mn> </m:mrow> </m:msup> </m:mrow> </m:msub> </m:math> <jats:tex-math>{\\Vert {\\theta }_{0}\\Vert }_{{L}^{n/3}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_012.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mo>‖</m:mo> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>‖</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:mrow> </m:msub> </m:math> <jats:tex-math>{\\Vert {u}_{0}\\Vert }_{{L}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the Boussinesq system is proved to have a unique global strong solution.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"11 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local and global solvability for the Boussinesq system in Besov spaces\",\"authors\":\"Shuokai Yan, Lu Wang, Qinghua Zhang\",\"doi\":\"10.1515/math-2023-0182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article focuses on local and global existence and uniqueness for the strong solution to the Boussinesq system in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0182_eq_001.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\\\mathbb{R}}}^{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0182_eq_002.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:math> <jats:tex-math>n\\\\ge 3</jats:tex-math> </jats:alternatives> </jats:inline-formula>) with full viscosity in Besov spaces. Under the hypotheses <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0182_eq_003.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mn>1</m:mn> <m:mo>&lt;</m:mo> <m:mi>p</m:mi> <m:mo>&lt;</m:mo> <m:mi>∞</m:mi> </m:math> <jats:tex-math>1\\\\lt p\\\\lt \\\\infty </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0182_eq_004.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mo>−</m:mo> <m:mi>min</m:mi> <m:mrow> <m:mo>{</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>2</m:mn> <m:mo>−</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> </m:mrow> <m:mo>}</m:mo> </m:mrow> <m:mo>&lt;</m:mo> <m:mi>s</m:mi> <m:mo>≤</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> </m:math> <jats:tex-math>-\\\\min \\\\left\\\\{n/p,2-n/p\\\\right\\\\}\\\\lt s\\\\le n/p</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the initial condition <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0182_eq_005.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>θ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:msubsup> <m:mrow> <m:mover accent=\\\"true\\\"> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:mrow> <m:mo>˙</m:mo> </m:mrow> </m:mover> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>s</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mo>×</m:mo> <m:msubsup> <m:mrow> <m:mover accent=\\\"true\\\"> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:mrow> <m:mo>˙</m:mo> </m:mrow> </m:mover> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>\\\\left({\\\\theta }_{0},{u}_{0})\\\\in {\\\\dot{B}}_{p,1}^{s-1}\\\\times {\\\\dot{B}}_{p,1}^{n/p-1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the Boussinesq system is proved to have a unique local strong solution. Under the hypotheses <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0182_eq_006.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>n</m:mi> <m:mo>≤</m:mo> <m:mi>p</m:mi> <m:mo>&lt;</m:mo> <m:mi>∞</m:mi> </m:math> <jats:tex-math>n\\\\le p\\\\lt \\\\infty </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0182_eq_007.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mo>−</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo>&lt;</m:mo> <m:mi>s</m:mi> <m:mo>≤</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> </m:math> <jats:tex-math>-n/p\\\\lt s\\\\le n/p</jats:tex-math> </jats:alternatives> </jats:inline-formula>, or especially <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0182_eq_008.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>n</m:mi> <m:mo>≤</m:mo> <m:mi>p</m:mi> <m:mo>&lt;</m:mo> <m:mn>2</m:mn> <m:mi>n</m:mi> </m:math> <jats:tex-math>n\\\\le p\\\\lt 2n</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0182_eq_009.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mo>−</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo>&lt;</m:mo> <m:mi>s</m:mi> <m:mo>&lt;</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math>-n/p\\\\lt s\\\\lt n/p-1</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the initial condition <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0182_eq_010.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>θ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msubsup> <m:mrow> <m:mover accent=\\\"true\\\"> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:mrow> <m:mo>˙</m:mo> </m:mrow> </m:mover> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>s</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mo>∩</m:mo> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mn>3</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>×</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msubsup> <m:mrow> <m:mover accent=\\\"true\\\"> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:mrow> <m:mo>˙</m:mo> </m:mrow> </m:mover> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mo>∩</m:mo> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\\\left({\\\\theta }_{0},{u}_{0})\\\\in \\\\left({\\\\dot{B}}_{p,1}^{s-1}\\\\cap {L}^{n/3})\\\\times \\\\left({\\\\dot{B}}_{p,1}^{n/p-1}\\\\cap {L}^{n})</jats:tex-math> </jats:alternatives> </jats:inline-formula> with sufficiently small norms <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0182_eq_011.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mo>‖</m:mo> <m:msub> <m:mrow> <m:mi>θ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>‖</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mn>3</m:mn> </m:mrow> </m:msup> </m:mrow> </m:msub> </m:math> <jats:tex-math>{\\\\Vert {\\\\theta }_{0}\\\\Vert }_{{L}^{n/3}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0182_eq_012.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mo>‖</m:mo> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>‖</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:mrow> </m:msub> </m:math> <jats:tex-math>{\\\\Vert {u}_{0}\\\\Vert }_{{L}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the Boussinesq system is proved to have a unique global strong solution.\",\"PeriodicalId\":48713,\"journal\":{\"name\":\"Open Mathematics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2023-0182\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0182","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究在贝索夫空间中,R n {{mathbb{R}}}^{n} ( n ≥ 3 n\ge 3 ) 中具有全粘性的布森斯克系统强解的局部和全局存在性与唯一性。在假设 1 < p < ∞ 1\lt p\lt \infty 和 - min { n ∕ p , 2 - n ∕ p } <;s ≤ n ∕ p -min left\{n/p,2-n/p\lt s\le n/p , 和初始条件 ( θ 0 , u 0 ) ∈ B ˙ p , 1 s - 1 × B ˙ p 、1 n ∕ p - 1 \left({\theta }_{0},{u}_{0})\in {\dot{B}}_{p,1}^{s-1}\times {\dot{B}}_{p,1}^{n/p-1}, 证明布西尼斯克系统有唯一的局部强解。在 n ≤ p < ∞ n\le p\lt \infty 和 - n ∕ p < s ≤ n ∕ p -n/p\lt s\le n/p 的假设条件下,或者特别是 n ≤ p < 2 n n\le p\lt 2n 和 - n ∕ p < s <;n ∕ p - 1 -n/p\lt s\lt n/p-1 ,初始条件 ( θ 0 , u 0 ) ∈ ( B ˙ p 、1 s - 1 ∩ L n ∕ 3 ) × ( B ˙ p , 1 n ∕ p - 1 ∩ L n ) \left({\theta }_{0},{u}_{0})\in \left({\dot{B}}_{p、1}^{s-1}\cap {L}^{n/3})\times \left({\dot{B}}_{p、1}^{n/p-1}\cap {L}^{n}) 具有足够小的规范‖ θ 0 ‖ L n ∕ 3 {Vert {\theta }_{0}\Vert }_{{L}^{n/3}} 和‖ u 0 ‖ L n {Vert {u}_{0}\Vert }_{{L}^{n}} 。 证明布辛斯方程组有唯一的全局强解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local and global solvability for the Boussinesq system in Besov spaces
This article focuses on local and global existence and uniqueness for the strong solution to the Boussinesq system in R n {{\mathbb{R}}}^{n} ( n 3 n\ge 3 ) with full viscosity in Besov spaces. Under the hypotheses 1 < p < 1\lt p\lt \infty and min { n p , 2 n p } < s n p -\min \left\{n/p,2-n/p\right\}\lt s\le n/p , and the initial condition ( θ 0 , u 0 ) B ˙ p , 1 s 1 × B ˙ p , 1 n p 1 \left({\theta }_{0},{u}_{0})\in {\dot{B}}_{p,1}^{s-1}\times {\dot{B}}_{p,1}^{n/p-1} , the Boussinesq system is proved to have a unique local strong solution. Under the hypotheses n p < n\le p\lt \infty and n p < s n p -n/p\lt s\le n/p , or especially n p < 2 n n\le p\lt 2n and n p < s < n p 1 -n/p\lt s\lt n/p-1 , and the initial condition ( θ 0 , u 0 ) ( B ˙ p , 1 s 1 L n 3 ) × ( B ˙ p , 1 n p 1 L n ) \left({\theta }_{0},{u}_{0})\in \left({\dot{B}}_{p,1}^{s-1}\cap {L}^{n/3})\times \left({\dot{B}}_{p,1}^{n/p-1}\cap {L}^{n}) with sufficiently small norms θ 0 L n 3 {\Vert {\theta }_{0}\Vert }_{{L}^{n/3}} and u 0 L n {\Vert {u}_{0}\Vert }_{{L}^{n}} , the Boussinesq system is proved to have a unique global strong solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Mathematics
Open Mathematics MATHEMATICS-
CiteScore
2.40
自引率
5.90%
发文量
67
审稿时长
16 weeks
期刊介绍: Open Mathematics - formerly Central European Journal of Mathematics Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind. Aims and Scope The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信