求助PDF
{"title":"贝索夫空间中布西尼斯克系统的局部和全局可解性","authors":"Shuokai Yan, Lu Wang, Qinghua Zhang","doi":"10.1515/math-2023-0182","DOIUrl":null,"url":null,"abstract":"This article focuses on local and global existence and uniqueness for the strong solution to the Boussinesq system in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\mathbb{R}}}^{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:math> <jats:tex-math>n\\ge 3</jats:tex-math> </jats:alternatives> </jats:inline-formula>) with full viscosity in Besov spaces. Under the hypotheses <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>1</m:mn> <m:mo><</m:mo> <m:mi>p</m:mi> <m:mo><</m:mo> <m:mi>∞</m:mi> </m:math> <jats:tex-math>1\\lt p\\lt \\infty </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>−</m:mo> <m:mi>min</m:mi> <m:mrow> <m:mo>{</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>2</m:mn> <m:mo>−</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> </m:mrow> <m:mo>}</m:mo> </m:mrow> <m:mo><</m:mo> <m:mi>s</m:mi> <m:mo>≤</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> </m:math> <jats:tex-math>-\\min \\left\\{n/p,2-n/p\\right\\}\\lt s\\le n/p</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the initial condition <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>θ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:msubsup> <m:mrow> <m:mover accent=\"true\"> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:mrow> <m:mo>˙</m:mo> </m:mrow> </m:mover> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>s</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mo>×</m:mo> <m:msubsup> <m:mrow> <m:mover accent=\"true\"> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:mrow> <m:mo>˙</m:mo> </m:mrow> </m:mover> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>\\left({\\theta }_{0},{u}_{0})\\in {\\dot{B}}_{p,1}^{s-1}\\times {\\dot{B}}_{p,1}^{n/p-1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the Boussinesq system is proved to have a unique local strong solution. Under the hypotheses <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>n</m:mi> <m:mo>≤</m:mo> <m:mi>p</m:mi> <m:mo><</m:mo> <m:mi>∞</m:mi> </m:math> <jats:tex-math>n\\le p\\lt \\infty </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_007.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>−</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo><</m:mo> <m:mi>s</m:mi> <m:mo>≤</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> </m:math> <jats:tex-math>-n/p\\lt s\\le n/p</jats:tex-math> </jats:alternatives> </jats:inline-formula>, or especially <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_008.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>n</m:mi> <m:mo>≤</m:mo> <m:mi>p</m:mi> <m:mo><</m:mo> <m:mn>2</m:mn> <m:mi>n</m:mi> </m:math> <jats:tex-math>n\\le p\\lt 2n</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_009.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>−</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo><</m:mo> <m:mi>s</m:mi> <m:mo><</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math>-n/p\\lt s\\lt n/p-1</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the initial condition <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_010.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>θ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msubsup> <m:mrow> <m:mover accent=\"true\"> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:mrow> <m:mo>˙</m:mo> </m:mrow> </m:mover> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>s</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mo>∩</m:mo> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mn>3</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>×</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msubsup> <m:mrow> <m:mover accent=\"true\"> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:mrow> <m:mo>˙</m:mo> </m:mrow> </m:mover> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mo>∩</m:mo> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left({\\theta }_{0},{u}_{0})\\in \\left({\\dot{B}}_{p,1}^{s-1}\\cap {L}^{n/3})\\times \\left({\\dot{B}}_{p,1}^{n/p-1}\\cap {L}^{n})</jats:tex-math> </jats:alternatives> </jats:inline-formula> with sufficiently small norms <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_011.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mo>‖</m:mo> <m:msub> <m:mrow> <m:mi>θ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>‖</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mn>3</m:mn> </m:mrow> </m:msup> </m:mrow> </m:msub> </m:math> <jats:tex-math>{\\Vert {\\theta }_{0}\\Vert }_{{L}^{n/3}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0182_eq_012.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mo>‖</m:mo> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>‖</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:mrow> </m:msub> </m:math> <jats:tex-math>{\\Vert {u}_{0}\\Vert }_{{L}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the Boussinesq system is proved to have a unique global strong solution.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local and global solvability for the Boussinesq system in Besov spaces\",\"authors\":\"Shuokai Yan, Lu Wang, Qinghua Zhang\",\"doi\":\"10.1515/math-2023-0182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article focuses on local and global existence and uniqueness for the strong solution to the Boussinesq system in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0182_eq_001.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\\\mathbb{R}}}^{n}</jats:tex-math> </jats:alternatives> </jats:inline-formula> (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0182_eq_002.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:math> <jats:tex-math>n\\\\ge 3</jats:tex-math> </jats:alternatives> </jats:inline-formula>) with full viscosity in Besov spaces. Under the hypotheses <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0182_eq_003.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mn>1</m:mn> <m:mo><</m:mo> <m:mi>p</m:mi> <m:mo><</m:mo> <m:mi>∞</m:mi> </m:math> <jats:tex-math>1\\\\lt p\\\\lt \\\\infty </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0182_eq_004.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mo>−</m:mo> <m:mi>min</m:mi> <m:mrow> <m:mo>{</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>2</m:mn> <m:mo>−</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> </m:mrow> <m:mo>}</m:mo> </m:mrow> <m:mo><</m:mo> <m:mi>s</m:mi> <m:mo>≤</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> </m:math> <jats:tex-math>-\\\\min \\\\left\\\\{n/p,2-n/p\\\\right\\\\}\\\\lt s\\\\le n/p</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the initial condition <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0182_eq_005.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>θ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:msubsup> <m:mrow> <m:mover accent=\\\"true\\\"> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:mrow> <m:mo>˙</m:mo> </m:mrow> </m:mover> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>s</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mo>×</m:mo> <m:msubsup> <m:mrow> <m:mover accent=\\\"true\\\"> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:mrow> <m:mo>˙</m:mo> </m:mrow> </m:mover> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> </m:math> <jats:tex-math>\\\\left({\\\\theta }_{0},{u}_{0})\\\\in {\\\\dot{B}}_{p,1}^{s-1}\\\\times {\\\\dot{B}}_{p,1}^{n/p-1}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the Boussinesq system is proved to have a unique local strong solution. Under the hypotheses <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0182_eq_006.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>n</m:mi> <m:mo>≤</m:mo> <m:mi>p</m:mi> <m:mo><</m:mo> <m:mi>∞</m:mi> </m:math> <jats:tex-math>n\\\\le p\\\\lt \\\\infty </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0182_eq_007.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mo>−</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo><</m:mo> <m:mi>s</m:mi> <m:mo>≤</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> </m:math> <jats:tex-math>-n/p\\\\lt s\\\\le n/p</jats:tex-math> </jats:alternatives> </jats:inline-formula>, or especially <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0182_eq_008.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>n</m:mi> <m:mo>≤</m:mo> <m:mi>p</m:mi> <m:mo><</m:mo> <m:mn>2</m:mn> <m:mi>n</m:mi> </m:math> <jats:tex-math>n\\\\le p\\\\lt 2n</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0182_eq_009.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mo>−</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo><</m:mo> <m:mi>s</m:mi> <m:mo><</m:mo> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math>-n/p\\\\lt s\\\\lt n/p-1</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and the initial condition <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0182_eq_010.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>θ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msubsup> <m:mrow> <m:mover accent=\\\"true\\\"> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:mrow> <m:mo>˙</m:mo> </m:mrow> </m:mover> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>s</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mo>∩</m:mo> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mn>3</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>×</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msubsup> <m:mrow> <m:mover accent=\\\"true\\\"> <m:mrow> <m:mi>B</m:mi> </m:mrow> <m:mrow> <m:mo>˙</m:mo> </m:mrow> </m:mover> </m:mrow> <m:mrow> <m:mi>p</m:mi> <m:mo>,</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mi>p</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msubsup> <m:mo>∩</m:mo> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\\\left({\\\\theta }_{0},{u}_{0})\\\\in \\\\left({\\\\dot{B}}_{p,1}^{s-1}\\\\cap {L}^{n/3})\\\\times \\\\left({\\\\dot{B}}_{p,1}^{n/p-1}\\\\cap {L}^{n})</jats:tex-math> </jats:alternatives> </jats:inline-formula> with sufficiently small norms <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0182_eq_011.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mo>‖</m:mo> <m:msub> <m:mrow> <m:mi>θ</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>‖</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>∕</m:mo> <m:mn>3</m:mn> </m:mrow> </m:msup> </m:mrow> </m:msub> </m:math> <jats:tex-math>{\\\\Vert {\\\\theta }_{0}\\\\Vert }_{{L}^{n/3}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0182_eq_012.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mo>‖</m:mo> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>‖</m:mo> </m:mrow> <m:mrow> <m:msup> <m:mrow> <m:mi>L</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:mrow> </m:msub> </m:math> <jats:tex-math>{\\\\Vert {u}_{0}\\\\Vert }_{{L}^{n}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the Boussinesq system is proved to have a unique global strong solution.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2023-0182\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0182","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Local and global solvability for the Boussinesq system in Besov spaces
This article focuses on local and global existence and uniqueness for the strong solution to the Boussinesq system in R n {{\mathbb{R}}}^{n} ( n ≥ 3 n\ge 3 ) with full viscosity in Besov spaces. Under the hypotheses 1 < p < ∞ 1\lt p\lt \infty and − min { n ∕ p , 2 − n ∕ p } < s ≤ n ∕ p -\min \left\{n/p,2-n/p\right\}\lt s\le n/p , and the initial condition ( θ 0 , u 0 ) ∈ B ˙ p , 1 s − 1 × B ˙ p , 1 n ∕ p − 1 \left({\theta }_{0},{u}_{0})\in {\dot{B}}_{p,1}^{s-1}\times {\dot{B}}_{p,1}^{n/p-1} , the Boussinesq system is proved to have a unique local strong solution. Under the hypotheses n ≤ p < ∞ n\le p\lt \infty and − n ∕ p < s ≤ n ∕ p -n/p\lt s\le n/p , or especially n ≤ p < 2 n n\le p\lt 2n and − n ∕ p < s < n ∕ p − 1 -n/p\lt s\lt n/p-1 , and the initial condition ( θ 0 , u 0 ) ∈ ( B ˙ p , 1 s − 1 ∩ L n ∕ 3 ) × ( B ˙ p , 1 n ∕ p − 1 ∩ L n ) \left({\theta }_{0},{u}_{0})\in \left({\dot{B}}_{p,1}^{s-1}\cap {L}^{n/3})\times \left({\dot{B}}_{p,1}^{n/p-1}\cap {L}^{n}) with sufficiently small norms ‖ θ 0 ‖ L n ∕ 3 {\Vert {\theta }_{0}\Vert }_{{L}^{n/3}} and ‖ u 0 ‖ L n {\Vert {u}_{0}\Vert }_{{L}^{n}} , the Boussinesq system is proved to have a unique global strong solution.