林不等式在数值积分中的应用

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Ahmed Salem Heilat, Ahmad Qazza, Raed Hatamleh, Rania Saadeh, Mohammad W. Alomari
{"title":"林不等式在数值积分中的应用","authors":"Ahmed Salem Heilat, Ahmad Qazza, Raed Hatamleh, Rania Saadeh, Mohammad W. Alomari","doi":"10.1515/math-2023-0162","DOIUrl":null,"url":null,"abstract":"This study systematically develops error estimates tailored to a specific set of general quadrature rules that exclusively incorporate first derivatives. Moreover, it introduces refined versions of select generalized Ostrowski’s type inequalities, enhancing their applicability. Through the skillful application of Hayashi’s celebrated inequality to specific functions, the provided proofs underpin these advancements. Notably, this approach extends its utility to approximate integrals of real functions with bounded first derivatives. Remarkably, it employs Newton-Cotes and Gauss-Legendre quadrature rules, bypassing the need for stringent requirements on higher-order derivatives.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An application of Hayashi's inequality in numerical integration\",\"authors\":\"Ahmed Salem Heilat, Ahmad Qazza, Raed Hatamleh, Rania Saadeh, Mohammad W. Alomari\",\"doi\":\"10.1515/math-2023-0162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study systematically develops error estimates tailored to a specific set of general quadrature rules that exclusively incorporate first derivatives. Moreover, it introduces refined versions of select generalized Ostrowski’s type inequalities, enhancing their applicability. Through the skillful application of Hayashi’s celebrated inequality to specific functions, the provided proofs underpin these advancements. Notably, this approach extends its utility to approximate integrals of real functions with bounded first derivatives. Remarkably, it employs Newton-Cotes and Gauss-Legendre quadrature rules, bypassing the need for stringent requirements on higher-order derivatives.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2023-0162\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0162","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究系统地开发了误差估算,这些误差估算是为专门包含一阶导数的一组特定一般正交规则量身定制的。此外,它还引入了精选的广义奥斯特洛夫斯基式不等式,增强了它们的适用性。通过巧妙地将林氏著名不等式应用于特定函数,所提供的证明为这些进步奠定了基础。值得注意的是,这种方法将其实用性扩展到了具有有界一阶导数的实函数近似积分。值得注意的是,它采用了牛顿-科茨和高斯-勒根得尔正交规则,绕过了对高阶导数的严格要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An application of Hayashi's inequality in numerical integration
This study systematically develops error estimates tailored to a specific set of general quadrature rules that exclusively incorporate first derivatives. Moreover, it introduces refined versions of select generalized Ostrowski’s type inequalities, enhancing their applicability. Through the skillful application of Hayashi’s celebrated inequality to specific functions, the provided proofs underpin these advancements. Notably, this approach extends its utility to approximate integrals of real functions with bounded first derivatives. Remarkably, it employs Newton-Cotes and Gauss-Legendre quadrature rules, bypassing the need for stringent requirements on higher-order derivatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信