Enhanced Young-type inequalities utilizing Kantorovich approach for semidefinite matrices

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Feras Bani-Ahmad, Mohammad Hussein Mohammad Rashid
{"title":"Enhanced Young-type inequalities utilizing Kantorovich approach for semidefinite matrices","authors":"Feras Bani-Ahmad, Mohammad Hussein Mohammad Rashid","doi":"10.1515/math-2023-0185","DOIUrl":null,"url":null,"abstract":"This article introduces new Young-type inequalities, leveraging the Kantorovich constant, by refining the original inequality. In addition, we present a range of norm-based inequalities applicable to positive semidefinite matrices, such as the Hilbert-Schmidt norm and the trace norm. The importance of these results lies in their dual significance: they hold inherent value on their own, and they also extend and build upon numerous established results within the existing literature.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0185","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces new Young-type inequalities, leveraging the Kantorovich constant, by refining the original inequality. In addition, we present a range of norm-based inequalities applicable to positive semidefinite matrices, such as the Hilbert-Schmidt norm and the trace norm. The importance of these results lies in their dual significance: they hold inherent value on their own, and they also extend and build upon numerous established results within the existing literature.
利用半有限矩阵的康托洛维奇方法增强杨式不等式
本文通过完善原始不等式,利用康托洛维奇常数引入了新的杨式不等式。此外,我们还提出了一系列适用于正半有限矩阵的基于规范的不等式,如希尔伯特-施密特规范和迹规范。这些结果的重要性在于它们的双重意义:它们本身具有内在价值,同时还扩展并建立在现有文献中的众多既定结果之上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信