Uniqueness of exponential polynomials

IF 1 4区 数学 Q1 MATHEMATICS
Ge Wang, Zhiying He, Mingliang Fang
{"title":"Uniqueness of exponential polynomials","authors":"Ge Wang, Zhiying He, Mingliang Fang","doi":"10.1515/math-2023-0173","DOIUrl":null,"url":null,"abstract":"In this article, we study the uniqueness of exponential polynomials and mainly prove: Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>n</m:mi> </m:math> <jats:tex-math>n</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a positive integer, let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mspace width=\"0.33em\" /> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mo>…</m:mo> <m:mo>,</m:mo> <m:mi>n</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{p}_{i}\\left(z)\\hspace{0.33em}\\left(i=1,2,\\ldots ,n)</jats:tex-math> </jats:alternatives> </jats:inline-formula> be nonzero polynomials, and let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>c</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> <m:mo>≠</m:mo> <m:mn>0</m:mn> <m:mspace width=\"0.33em\" /> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> <m:mo>,</m:mo> <m:mo>…</m:mo> <m:mo>,</m:mo> <m:mi>n</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>{c}_{i}\\ne 0\\hspace{0.33em}\\left(i=1,2,\\ldots ,n)</jats:tex-math> </jats:alternatives> </jats:inline-formula> be distinct finite complex numbers. Suppose that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>f\\left(z)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is an entire function, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>c</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mi>z</m:mi> </m:mrow> </m:msup> <m:mo>+</m:mo> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>c</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> <m:mi>z</m:mi> </m:mrow> </m:msup> <m:mo>+</m:mo> <m:mo>⋯</m:mo> <m:mo>+</m:mo> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>c</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msub> <m:mi>z</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>g\\left(z)={p}_{1}\\left(z){e}^{{c}_{1}z}+{p}_{2}\\left(z){e}^{{c}_{2}z}+\\cdots +{p}_{n}\\left(z){e}^{{c}_{n}z}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. If <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>f\\left(z)</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_007.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>g\\left(z)</jats:tex-math> </jats:alternatives> </jats:inline-formula> share <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_008.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>a</m:mi> </m:math> <jats:tex-math>a</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_009.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>b</m:mi> </m:math> <jats:tex-math>b</jats:tex-math> </jats:alternatives> </jats:inline-formula> CM (counting multiplicities), where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_010.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>a</m:mi> </m:math> <jats:tex-math>a</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_011.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>b</m:mi> </m:math> <jats:tex-math>b</jats:tex-math> </jats:alternatives> </jats:inline-formula> are two distinct finite complex numbers, then one of the following cases must occur: <jats:list list-type=\"custom\"> <jats:list-item> <jats:label>(i)</jats:label> <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_012.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>n</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math>n=1</jats:tex-math> </jats:alternatives> </jats:inline-formula>. </jats:list-item> <jats:list-item> <jats:label /> If <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_013.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>a</m:mi> <m:mo>≠</m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math>a\\ne 0</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_014.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>b</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math>b=0</jats:tex-math> </jats:alternatives> </jats:inline-formula>, then either <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_015.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≡</m:mo> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>f\\left(z)\\equiv g\\left(z)</jats:tex-math> </jats:alternatives> </jats:inline-formula> or <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_016.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≡</m:mo> <m:msup> <m:mrow> <m:mi>a</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>f\\left(z)g\\left(z)\\equiv {a}^{2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>; </jats:list-item> <jats:list-item> <jats:label /> If <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_017.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>a</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math>a=0</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_018.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>b</m:mi> <m:mo>≠</m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math>b\\ne 0</jats:tex-math> </jats:alternatives> </jats:inline-formula>, then either <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_019.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≡</m:mo> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>f\\left(z)\\equiv g\\left(z)</jats:tex-math> </jats:alternatives> </jats:inline-formula> or <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_020.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≡</m:mo> <m:msup> <m:mrow> <m:mi>b</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>f\\left(z)g\\left(z)\\equiv {b}^{2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>; </jats:list-item> <jats:list-item> <jats:label /> If <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_021.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>a</m:mi> <m:mo>≠</m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math>a\\ne 0</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_022.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>b</m:mi> <m:mo>≠</m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math>b\\ne 0</jats:tex-math> </jats:alternatives> </jats:inline-formula>, then either <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_023.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≡</m:mo> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>f\\left(z)\\equiv g\\left(z)</jats:tex-math> </jats:alternatives> </jats:inline-formula> or <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_024.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≡</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>a</m:mi> <m:mo>+</m:mo> <m:mi>b</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>−</m:mo> <m:mi>a</m:mi> <m:mi>b</m:mi> </m:math> <jats:tex-math>f\\left(z)g\\left(z)\\equiv \\left(a+b)g\\left(z)-ab</jats:tex-math> </jats:alternatives> </jats:inline-formula>. </jats:list-item> <jats:list-item> <jats:label>(ii)</jats:label> <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_025.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:math> <jats:tex-math>n\\ge 2</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0173_eq_026.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>f</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≡</m:mo> <m:mi>g</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>z</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>f\\left(z)\\equiv g\\left(z)</jats:tex-math> </jats:alternatives> </jats:inline-formula>. </jats:list-item> </jats:list> This is an extension of the result obtained in an earlier study on meromorphic functions in 1974.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"14 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0173","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we study the uniqueness of exponential polynomials and mainly prove: Let n n be a positive integer, let p i ( z ) ( i = 1 , 2 , , n ) {p}_{i}\left(z)\hspace{0.33em}\left(i=1,2,\ldots ,n) be nonzero polynomials, and let c i 0 ( i = 1 , 2 , , n ) {c}_{i}\ne 0\hspace{0.33em}\left(i=1,2,\ldots ,n) be distinct finite complex numbers. Suppose that f ( z ) f\left(z) is an entire function, g ( z ) = p 1 ( z ) e c 1 z + p 2 ( z ) e c 2 z + + p n ( z ) e c n z g\left(z)={p}_{1}\left(z){e}^{{c}_{1}z}+{p}_{2}\left(z){e}^{{c}_{2}z}+\cdots +{p}_{n}\left(z){e}^{{c}_{n}z} . If f ( z ) f\left(z) and g ( z ) g\left(z) share a a and b b CM (counting multiplicities), where a a and b b are two distinct finite complex numbers, then one of the following cases must occur: (i) n = 1 n=1 . If a 0 a\ne 0 , b = 0 b=0 , then either f ( z ) g ( z ) f\left(z)\equiv g\left(z) or f ( z ) g ( z ) a 2 f\left(z)g\left(z)\equiv {a}^{2} ; If a = 0 a=0 , b 0 b\ne 0 , then either f ( z ) g ( z ) f\left(z)\equiv g\left(z) or f ( z ) g ( z ) b 2 f\left(z)g\left(z)\equiv {b}^{2} ; If a 0 a\ne 0 , b 0 b\ne 0 , then either f ( z ) g ( z ) f\left(z)\equiv g\left(z) or f ( z ) g ( z ) ( a + b ) g ( z ) a b f\left(z)g\left(z)\equiv \left(a+b)g\left(z)-ab . (ii) n 2 n\ge 2 , f ( z ) g ( z ) f\left(z)\equiv g\left(z) . This is an extension of the result obtained in an earlier study on meromorphic functions in 1974.
指数多项式的唯一性
本文研究指数多项式的唯一性,并主要证明:设 n n 为正整数,设 p i ( z ) ( i = 1 , 2 , ... , n ) {p}_{i}\left(z)\hspace{0.33em}\left(i=1,2,\ldots ,n) 是非零多项式,并且让 c i ≠ 0 ( i = 1 , 2 , ... , n ) {c}_{i}\ne 0\hspace{0.33em}\left(i=1,2,\ldots ,n) 是不同的有限复数。假设 f ( z ) f\left(z) 是一个全函数、 g ( z ) = p 1 ( z ) e c 1 z + p 2 ( z ) e c 2 z + ⋯ + p n ( z ) e c n z g\left(z)={p}_{1}\left(z){e}^{c}_{1}z}+{p}_{2}\left(z){e}^{c}_{2}z}+\cdots +{p}_{n}\left(z){e}^{c}_{n}z} 。如果 f ( z ) f\left(z) 和 g ( z ) g\left(z) 共享 a a 和 b b CM(计算乘数),其中 a a 和 b b 是两个不同的有限复数,那么必须出现以下情况之一: (i) n = 1 n=1 。 如果 a ≠ 0 a\ne 0 , b = 0 b=0 , 那么要么 f ( z ) ≡ g ( z ) f\left(z)\equiv g\left(z) 或者 f ( z ) g ( z ) ≡ a 2 f\left(z)g\left(z)\equiv {a}^{2} ; 如果 a = 0 a=0 , b ≠ 0 b\ne 0 , 那么要么 f ( z ) ≡ g ( z ) f\left(z)\equiv g\left(z) 或者 f ( z ) g ( z ) ≡ b 2 f\left(z)g\left(z)\equiv {b}^{2} ; 如果 a ≠ 0 a\ne 0 , b ≠ 0 b\ne 0 ,那么要么 f ( z ) ≡ g ( z ) f\left(z)\equiv g\left(z) 或者 f ( z ) g ( z ) ≡ ( a + b ) g ( z ) - a b f\left(z)g\left(z)\equiv \left(a+b)g\left(z)-ab 。 (ii) n ≥ 2 n\ge 2 , f ( z ) ≡ g ( z ) f\left(z)\equiv g\left(z) . 这是对 1974 年早先关于微变函数的研究中得到的结果的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Mathematics
Open Mathematics MATHEMATICS-
CiteScore
2.40
自引率
5.90%
发文量
67
审稿时长
16 weeks
期刊介绍: Open Mathematics - formerly Central European Journal of Mathematics Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind. Aims and Scope The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信