论某些与导数有关的函数方程

IF 1 4区 数学 Q1 MATHEMATICS
Benjamin Marcen, Joso Vukman
{"title":"论某些与导数有关的函数方程","authors":"Benjamin Marcen, Joso Vukman","doi":"10.1515/math-2023-0166","DOIUrl":null,"url":null,"abstract":"In this article, we prove the following result. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:math> <jats:tex-math>n\\ge 3</jats:tex-math> </jats:alternatives> </jats:inline-formula> be some fixed integer and let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>R</m:mi> </m:math> <jats:tex-math>R</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a prime ring with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">char</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>R</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≠</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>!</m:mo> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>{\\rm{char}}\\left(R)\\ne \\left(n+1)\\&amp;#x0021;{2}^{n-2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Suppose there exists an additive mapping <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>D</m:mi> <m:mo>:</m:mo> <m:mi>R</m:mi> <m:mo>→</m:mo> <m:mi>R</m:mi> </m:math> <jats:tex-math>D:R\\to R</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfying the relation <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mrow> <m:mtable displaystyle=\"true\" columnspacing=\"0.33em\"> <m:mtr> <m:mtd columnalign=\"right\"> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"center\"> <m:mo>=</m:mo> </m:mtd> <m:mtd columnalign=\"left\"> <m:mfenced open=\"(\" close=\")\"> <m:mrow> <m:munderover> <m:mrow> <m:mstyle displaystyle=\"true\"> <m:mo>∑</m:mo> </m:mstyle> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:munderover> <m:mfenced open=\"(\" close=\")\"> <m:mfrac linethickness=\"0.0pt\"> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:mfrac> </m:mfenced> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msup> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> <m:mo>−</m:mo> <m:mi>i</m:mi> </m:mrow> </m:msup> </m:mrow> </m:mfenced> <m:mo>+</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mo>+</m:mo> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"right\" /> <m:mtd columnalign=\"center\" /> <m:mtd columnalign=\"left\"> <m:mo>+</m:mo> <m:munderover> <m:mrow> <m:mstyle displaystyle=\"true\"> <m:mo>∑</m:mo> </m:mstyle> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:munderover> <m:mfenced open=\"(\" close=\")\"> <m:mrow> <m:munderover> <m:mrow> <m:mstyle displaystyle=\"true\"> <m:mo>∑</m:mo> </m:mstyle> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:munderover> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mfenced open=\"(\" close=\")\"> <m:mfrac linethickness=\"0.0pt\"> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> </m:mrow> </m:mfrac> </m:mfenced> <m:mo>+</m:mo> <m:munderover> <m:mrow> <m:mstyle displaystyle=\"true\"> <m:mo>∑</m:mo> </m:mstyle> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> <m:mo>−</m:mo> <m:mi>i</m:mi> </m:mrow> </m:munderover> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mfenced open=\"(\" close=\")\"> <m:mfrac linethickness=\"0.0pt\"> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mi>i</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:mfrac> </m:mfenced> </m:mrow> </m:mfenced> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msup> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> <m:mo>−</m:mo> <m:mi>i</m:mi> </m:mrow> </m:msup> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:math> <jats:tex-math>\\begin{array}{rcl}{2}^{n-2}D\\left({x}^{n})&amp; =&amp; \\left(\\mathop{\\displaystyle \\sum }\\limits_{i=0}^{n-2}\\left(\\genfrac{}{}{0.0pt}{}{n-2}{i}\\right){x}^{i}D\\left({x}^{2}){x}^{n-2-i}\\right)+\\left({2}^{n-2}-1)\\left(D\\left(x){x}^{n-1}+{x}^{n-1}D\\left(x))\\\\ &amp; &amp; +\\mathop{\\displaystyle \\sum }\\limits_{i=1}^{n-2}\\left(\\mathop{\\displaystyle \\sum }\\limits_{k=2}^{i}\\left({2}^{k-1}-1)\\left(\\genfrac{}{}{0.0pt}{}{n-k-2}{i-k}\\right)+\\mathop{\\displaystyle \\sum }\\limits_{k=2}^{n-1-i}\\left({2}^{k-1}-1)\\left(\\genfrac{}{}{0.0pt}{}{n-k-2}{n-i-k-1}\\right)\\right){x}^{i}D\\left(x){x}^{n-1-i}\\end{array}</jats:tex-math> </jats:alternatives> </jats:disp-formula> for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:mi>R</m:mi> <m:mo>.</m:mo> </m:math> <jats:tex-math>x\\in R.</jats:tex-math> </jats:alternatives> </jats:inline-formula> In this case, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_007.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>D</m:mi> </m:math> <jats:tex-math>D</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a derivation. This result is related to a classical result of Herstein, which states that any Jordan derivation on a prime ring with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_008.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">char</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>R</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≠</m:mo> <m:mn>2</m:mn> </m:math> <jats:tex-math>{\\rm{char}}\\left(R)\\ne 2</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a derivation.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"11 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On certain functional equation related to derivations\",\"authors\":\"Benjamin Marcen, Joso Vukman\",\"doi\":\"10.1515/math-2023-0166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we prove the following result. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0166_eq_001.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:math> <jats:tex-math>n\\\\ge 3</jats:tex-math> </jats:alternatives> </jats:inline-formula> be some fixed integer and let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0166_eq_002.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>R</m:mi> </m:math> <jats:tex-math>R</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a prime ring with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0166_eq_003.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">char</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>R</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≠</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>!</m:mo> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>{\\\\rm{char}}\\\\left(R)\\\\ne \\\\left(n+1)\\\\&amp;#x0021;{2}^{n-2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Suppose there exists an additive mapping <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0166_eq_004.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>D</m:mi> <m:mo>:</m:mo> <m:mi>R</m:mi> <m:mo>→</m:mo> <m:mi>R</m:mi> </m:math> <jats:tex-math>D:R\\\\to R</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfying the relation <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0166_eq_005.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\"> <m:mrow> <m:mtable displaystyle=\\\"true\\\" columnspacing=\\\"0.33em\\\"> <m:mtr> <m:mtd columnalign=\\\"right\\\"> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"center\\\"> <m:mo>=</m:mo> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mfenced open=\\\"(\\\" close=\\\")\\\"> <m:mrow> <m:munderover> <m:mrow> <m:mstyle displaystyle=\\\"true\\\"> <m:mo>∑</m:mo> </m:mstyle> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:munderover> <m:mfenced open=\\\"(\\\" close=\\\")\\\"> <m:mfrac linethickness=\\\"0.0pt\\\"> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:mfrac> </m:mfenced> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msup> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> <m:mo>−</m:mo> <m:mi>i</m:mi> </m:mrow> </m:msup> </m:mrow> </m:mfenced> <m:mo>+</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mo>+</m:mo> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"right\\\" /> <m:mtd columnalign=\\\"center\\\" /> <m:mtd columnalign=\\\"left\\\"> <m:mo>+</m:mo> <m:munderover> <m:mrow> <m:mstyle displaystyle=\\\"true\\\"> <m:mo>∑</m:mo> </m:mstyle> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:munderover> <m:mfenced open=\\\"(\\\" close=\\\")\\\"> <m:mrow> <m:munderover> <m:mrow> <m:mstyle displaystyle=\\\"true\\\"> <m:mo>∑</m:mo> </m:mstyle> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:munderover> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mfenced open=\\\"(\\\" close=\\\")\\\"> <m:mfrac linethickness=\\\"0.0pt\\\"> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> </m:mrow> </m:mfrac> </m:mfenced> <m:mo>+</m:mo> <m:munderover> <m:mrow> <m:mstyle displaystyle=\\\"true\\\"> <m:mo>∑</m:mo> </m:mstyle> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> <m:mo>−</m:mo> <m:mi>i</m:mi> </m:mrow> </m:munderover> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mfenced open=\\\"(\\\" close=\\\")\\\"> <m:mfrac linethickness=\\\"0.0pt\\\"> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mi>i</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:mfrac> </m:mfenced> </m:mrow> </m:mfenced> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msup> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> <m:mo>−</m:mo> <m:mi>i</m:mi> </m:mrow> </m:msup> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:math> <jats:tex-math>\\\\begin{array}{rcl}{2}^{n-2}D\\\\left({x}^{n})&amp; =&amp; \\\\left(\\\\mathop{\\\\displaystyle \\\\sum }\\\\limits_{i=0}^{n-2}\\\\left(\\\\genfrac{}{}{0.0pt}{}{n-2}{i}\\\\right){x}^{i}D\\\\left({x}^{2}){x}^{n-2-i}\\\\right)+\\\\left({2}^{n-2}-1)\\\\left(D\\\\left(x){x}^{n-1}+{x}^{n-1}D\\\\left(x))\\\\\\\\ &amp; &amp; +\\\\mathop{\\\\displaystyle \\\\sum }\\\\limits_{i=1}^{n-2}\\\\left(\\\\mathop{\\\\displaystyle \\\\sum }\\\\limits_{k=2}^{i}\\\\left({2}^{k-1}-1)\\\\left(\\\\genfrac{}{}{0.0pt}{}{n-k-2}{i-k}\\\\right)+\\\\mathop{\\\\displaystyle \\\\sum }\\\\limits_{k=2}^{n-1-i}\\\\left({2}^{k-1}-1)\\\\left(\\\\genfrac{}{}{0.0pt}{}{n-k-2}{n-i-k-1}\\\\right)\\\\right){x}^{i}D\\\\left(x){x}^{n-1-i}\\\\end{array}</jats:tex-math> </jats:alternatives> </jats:disp-formula> for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0166_eq_006.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:mi>R</m:mi> <m:mo>.</m:mo> </m:math> <jats:tex-math>x\\\\in R.</jats:tex-math> </jats:alternatives> </jats:inline-formula> In this case, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0166_eq_007.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>D</m:mi> </m:math> <jats:tex-math>D</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a derivation. This result is related to a classical result of Herstein, which states that any Jordan derivation on a prime ring with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0166_eq_008.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">char</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>R</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≠</m:mo> <m:mn>2</m:mn> </m:math> <jats:tex-math>{\\\\rm{char}}\\\\left(R)\\\\ne 2</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a derivation.\",\"PeriodicalId\":48713,\"journal\":{\"name\":\"Open Mathematics\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2023-0166\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0166","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将证明以下结果。设 n ≥ 3 n\ge 3 是某个固定整数,设 R R 是质环,char ( R ) ≠ ( n + 1 ) ! 2 n - 2 {\rm{char}}\left(R)\ne \left(n+1)\&#x0021;{2}^{n-2} 。假设存在一个加法映射 D : R → R D:R\to R 满足关系式 2 n - 2 D ( x n ) = ∑ i = 0 n - 2 n - 2 i x i D ( x 2 ) x n - 2 - i + ( 2 n - 2 - 1 ) ( D ( x ) x n - 1 + x n - 1 D ( x ) ) + ∑ i = 1 n - 2 ∑ k = 2 i ( 2 k - 1 - 1 ) n - k - 2 i - k + ∑ k = 2 n - 1 - i ( 2 k - 1 - 1 ) n - k - 2 n - i - k - 1 x i D ( x ) x n - 1 - i \begin{array}{rcl}{2}^{n-2}D\left({x}^{n})&;=& \left(\mathop{displaystyle \sum }\limits_{i=0}^{n-2}\left(\genfrac{}{}{0.0pt}{}{n-2}{i}\right){x}^{i}D\left({x}^{2}){x}^{n-2-i}\right)+\left({2}^{n-2}-1)\left(D\left(x){x}^{n-1}+{x}^{n-1}D\left(x))\\ & &+\mathop{\displaystyle \sum }\limits_{i=1}^{n-2}\left(\mathop{\displaystyle \sum }\limits_{k=2}^{i}\left({2}^{k-1}-1)\left(\genfrac{}{}{0.0pt}{}{n-k-2}{i-k}\right)+\mathop{\displaystyle \sum }\limits_{k=2}^{n-1-i}\left({2}^{k-1}-1)\left(\genfrac{}{}{0.0pt}{}{n-k-2}{n-i-k-1}\right){x}^{i}D\left(x){x}^{n-1-i}\end{array} for all x∈ R. x\in R. In this case, D D is a derivation.这个结果与赫斯坦的一个经典结果有关,它指出在质环上任何char ( R ) ≠ 2 {\rm{char}}\left(R)\ne 2 的乔丹导数都是一个导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On certain functional equation related to derivations
In this article, we prove the following result. Let n 3 n\ge 3 be some fixed integer and let R R be a prime ring with char ( R ) ( n + 1 ) ! 2 n 2 {\rm{char}}\left(R)\ne \left(n+1)\&#x0021;{2}^{n-2} . Suppose there exists an additive mapping D : R R D:R\to R satisfying the relation 2 n 2 D ( x n ) = i = 0 n 2 n 2 i x i D ( x 2 ) x n 2 i + ( 2 n 2 1 ) ( D ( x ) x n 1 + x n 1 D ( x ) ) + i = 1 n 2 k = 2 i ( 2 k 1 1 ) n k 2 i k + k = 2 n 1 i ( 2 k 1 1 ) n k 2 n i k 1 x i D ( x ) x n 1 i \begin{array}{rcl}{2}^{n-2}D\left({x}^{n})& =& \left(\mathop{\displaystyle \sum }\limits_{i=0}^{n-2}\left(\genfrac{}{}{0.0pt}{}{n-2}{i}\right){x}^{i}D\left({x}^{2}){x}^{n-2-i}\right)+\left({2}^{n-2}-1)\left(D\left(x){x}^{n-1}+{x}^{n-1}D\left(x))\\ & & +\mathop{\displaystyle \sum }\limits_{i=1}^{n-2}\left(\mathop{\displaystyle \sum }\limits_{k=2}^{i}\left({2}^{k-1}-1)\left(\genfrac{}{}{0.0pt}{}{n-k-2}{i-k}\right)+\mathop{\displaystyle \sum }\limits_{k=2}^{n-1-i}\left({2}^{k-1}-1)\left(\genfrac{}{}{0.0pt}{}{n-k-2}{n-i-k-1}\right)\right){x}^{i}D\left(x){x}^{n-1-i}\end{array} for all x R . x\in R. In this case, D D is a derivation. This result is related to a classical result of Herstein, which states that any Jordan derivation on a prime ring with char ( R ) 2 {\rm{char}}\left(R)\ne 2 is a derivation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Mathematics
Open Mathematics MATHEMATICS-
CiteScore
2.40
自引率
5.90%
发文量
67
审稿时长
16 weeks
期刊介绍: Open Mathematics - formerly Central European Journal of Mathematics Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind. Aims and Scope The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信