求助PDF
{"title":"论某些与导数有关的函数方程","authors":"Benjamin Marcen, Joso Vukman","doi":"10.1515/math-2023-0166","DOIUrl":null,"url":null,"abstract":"In this article, we prove the following result. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:math> <jats:tex-math>n\\ge 3</jats:tex-math> </jats:alternatives> </jats:inline-formula> be some fixed integer and let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>R</m:mi> </m:math> <jats:tex-math>R</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a prime ring with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">char</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>R</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≠</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>!</m:mo> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>{\\rm{char}}\\left(R)\\ne \\left(n+1)\\&#x0021;{2}^{n-2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Suppose there exists an additive mapping <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>D</m:mi> <m:mo>:</m:mo> <m:mi>R</m:mi> <m:mo>→</m:mo> <m:mi>R</m:mi> </m:math> <jats:tex-math>D:R\\to R</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfying the relation <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mrow> <m:mtable displaystyle=\"true\" columnspacing=\"0.33em\"> <m:mtr> <m:mtd columnalign=\"right\"> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"center\"> <m:mo>=</m:mo> </m:mtd> <m:mtd columnalign=\"left\"> <m:mfenced open=\"(\" close=\")\"> <m:mrow> <m:munderover> <m:mrow> <m:mstyle displaystyle=\"true\"> <m:mo>∑</m:mo> </m:mstyle> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:munderover> <m:mfenced open=\"(\" close=\")\"> <m:mfrac linethickness=\"0.0pt\"> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:mfrac> </m:mfenced> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msup> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> <m:mo>−</m:mo> <m:mi>i</m:mi> </m:mrow> </m:msup> </m:mrow> </m:mfenced> <m:mo>+</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mo>+</m:mo> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"right\" /> <m:mtd columnalign=\"center\" /> <m:mtd columnalign=\"left\"> <m:mo>+</m:mo> <m:munderover> <m:mrow> <m:mstyle displaystyle=\"true\"> <m:mo>∑</m:mo> </m:mstyle> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:munderover> <m:mfenced open=\"(\" close=\")\"> <m:mrow> <m:munderover> <m:mrow> <m:mstyle displaystyle=\"true\"> <m:mo>∑</m:mo> </m:mstyle> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:munderover> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mfenced open=\"(\" close=\")\"> <m:mfrac linethickness=\"0.0pt\"> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> </m:mrow> </m:mfrac> </m:mfenced> <m:mo>+</m:mo> <m:munderover> <m:mrow> <m:mstyle displaystyle=\"true\"> <m:mo>∑</m:mo> </m:mstyle> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> <m:mo>−</m:mo> <m:mi>i</m:mi> </m:mrow> </m:munderover> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mfenced open=\"(\" close=\")\"> <m:mfrac linethickness=\"0.0pt\"> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mi>i</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:mfrac> </m:mfenced> </m:mrow> </m:mfenced> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msup> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> <m:mo>−</m:mo> <m:mi>i</m:mi> </m:mrow> </m:msup> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:math> <jats:tex-math>\\begin{array}{rcl}{2}^{n-2}D\\left({x}^{n})& =& \\left(\\mathop{\\displaystyle \\sum }\\limits_{i=0}^{n-2}\\left(\\genfrac{}{}{0.0pt}{}{n-2}{i}\\right){x}^{i}D\\left({x}^{2}){x}^{n-2-i}\\right)+\\left({2}^{n-2}-1)\\left(D\\left(x){x}^{n-1}+{x}^{n-1}D\\left(x))\\\\ & & +\\mathop{\\displaystyle \\sum }\\limits_{i=1}^{n-2}\\left(\\mathop{\\displaystyle \\sum }\\limits_{k=2}^{i}\\left({2}^{k-1}-1)\\left(\\genfrac{}{}{0.0pt}{}{n-k-2}{i-k}\\right)+\\mathop{\\displaystyle \\sum }\\limits_{k=2}^{n-1-i}\\left({2}^{k-1}-1)\\left(\\genfrac{}{}{0.0pt}{}{n-k-2}{n-i-k-1}\\right)\\right){x}^{i}D\\left(x){x}^{n-1-i}\\end{array}</jats:tex-math> </jats:alternatives> </jats:disp-formula> for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:mi>R</m:mi> <m:mo>.</m:mo> </m:math> <jats:tex-math>x\\in R.</jats:tex-math> </jats:alternatives> </jats:inline-formula> In this case, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_007.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>D</m:mi> </m:math> <jats:tex-math>D</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a derivation. This result is related to a classical result of Herstein, which states that any Jordan derivation on a prime ring with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_008.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">char</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>R</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≠</m:mo> <m:mn>2</m:mn> </m:math> <jats:tex-math>{\\rm{char}}\\left(R)\\ne 2</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a derivation.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On certain functional equation related to derivations\",\"authors\":\"Benjamin Marcen, Joso Vukman\",\"doi\":\"10.1515/math-2023-0166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we prove the following result. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0166_eq_001.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:math> <jats:tex-math>n\\\\ge 3</jats:tex-math> </jats:alternatives> </jats:inline-formula> be some fixed integer and let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0166_eq_002.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>R</m:mi> </m:math> <jats:tex-math>R</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a prime ring with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0166_eq_003.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">char</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>R</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≠</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>!</m:mo> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>{\\\\rm{char}}\\\\left(R)\\\\ne \\\\left(n+1)\\\\&#x0021;{2}^{n-2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Suppose there exists an additive mapping <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0166_eq_004.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>D</m:mi> <m:mo>:</m:mo> <m:mi>R</m:mi> <m:mo>→</m:mo> <m:mi>R</m:mi> </m:math> <jats:tex-math>D:R\\\\to R</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfying the relation <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0166_eq_005.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\"> <m:mrow> <m:mtable displaystyle=\\\"true\\\" columnspacing=\\\"0.33em\\\"> <m:mtr> <m:mtd columnalign=\\\"right\\\"> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"center\\\"> <m:mo>=</m:mo> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mfenced open=\\\"(\\\" close=\\\")\\\"> <m:mrow> <m:munderover> <m:mrow> <m:mstyle displaystyle=\\\"true\\\"> <m:mo>∑</m:mo> </m:mstyle> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:munderover> <m:mfenced open=\\\"(\\\" close=\\\")\\\"> <m:mfrac linethickness=\\\"0.0pt\\\"> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:mfrac> </m:mfenced> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msup> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> <m:mo>−</m:mo> <m:mi>i</m:mi> </m:mrow> </m:msup> </m:mrow> </m:mfenced> <m:mo>+</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mo>+</m:mo> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"right\\\" /> <m:mtd columnalign=\\\"center\\\" /> <m:mtd columnalign=\\\"left\\\"> <m:mo>+</m:mo> <m:munderover> <m:mrow> <m:mstyle displaystyle=\\\"true\\\"> <m:mo>∑</m:mo> </m:mstyle> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:munderover> <m:mfenced open=\\\"(\\\" close=\\\")\\\"> <m:mrow> <m:munderover> <m:mrow> <m:mstyle displaystyle=\\\"true\\\"> <m:mo>∑</m:mo> </m:mstyle> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:munderover> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mfenced open=\\\"(\\\" close=\\\")\\\"> <m:mfrac linethickness=\\\"0.0pt\\\"> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> </m:mrow> </m:mfrac> </m:mfenced> <m:mo>+</m:mo> <m:munderover> <m:mrow> <m:mstyle displaystyle=\\\"true\\\"> <m:mo>∑</m:mo> </m:mstyle> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> <m:mo>−</m:mo> <m:mi>i</m:mi> </m:mrow> </m:munderover> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mfenced open=\\\"(\\\" close=\\\")\\\"> <m:mfrac linethickness=\\\"0.0pt\\\"> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mi>i</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:mfrac> </m:mfenced> </m:mrow> </m:mfenced> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msup> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> <m:mo>−</m:mo> <m:mi>i</m:mi> </m:mrow> </m:msup> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:math> <jats:tex-math>\\\\begin{array}{rcl}{2}^{n-2}D\\\\left({x}^{n})& =& \\\\left(\\\\mathop{\\\\displaystyle \\\\sum }\\\\limits_{i=0}^{n-2}\\\\left(\\\\genfrac{}{}{0.0pt}{}{n-2}{i}\\\\right){x}^{i}D\\\\left({x}^{2}){x}^{n-2-i}\\\\right)+\\\\left({2}^{n-2}-1)\\\\left(D\\\\left(x){x}^{n-1}+{x}^{n-1}D\\\\left(x))\\\\\\\\ & & +\\\\mathop{\\\\displaystyle \\\\sum }\\\\limits_{i=1}^{n-2}\\\\left(\\\\mathop{\\\\displaystyle \\\\sum }\\\\limits_{k=2}^{i}\\\\left({2}^{k-1}-1)\\\\left(\\\\genfrac{}{}{0.0pt}{}{n-k-2}{i-k}\\\\right)+\\\\mathop{\\\\displaystyle \\\\sum }\\\\limits_{k=2}^{n-1-i}\\\\left({2}^{k-1}-1)\\\\left(\\\\genfrac{}{}{0.0pt}{}{n-k-2}{n-i-k-1}\\\\right)\\\\right){x}^{i}D\\\\left(x){x}^{n-1-i}\\\\end{array}</jats:tex-math> </jats:alternatives> </jats:disp-formula> for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0166_eq_006.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:mi>R</m:mi> <m:mo>.</m:mo> </m:math> <jats:tex-math>x\\\\in R.</jats:tex-math> </jats:alternatives> </jats:inline-formula> In this case, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0166_eq_007.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>D</m:mi> </m:math> <jats:tex-math>D</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a derivation. This result is related to a classical result of Herstein, which states that any Jordan derivation on a prime ring with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0166_eq_008.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">char</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>R</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≠</m:mo> <m:mn>2</m:mn> </m:math> <jats:tex-math>{\\\\rm{char}}\\\\left(R)\\\\ne 2</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a derivation.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2023-0166\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0166","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
引用
批量引用