论某些与导数有关的函数方程

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Benjamin Marcen, Joso Vukman
{"title":"论某些与导数有关的函数方程","authors":"Benjamin Marcen, Joso Vukman","doi":"10.1515/math-2023-0166","DOIUrl":null,"url":null,"abstract":"In this article, we prove the following result. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:math> <jats:tex-math>n\\ge 3</jats:tex-math> </jats:alternatives> </jats:inline-formula> be some fixed integer and let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>R</m:mi> </m:math> <jats:tex-math>R</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a prime ring with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">char</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>R</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≠</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>!</m:mo> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>{\\rm{char}}\\left(R)\\ne \\left(n+1)\\&amp;#x0021;{2}^{n-2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Suppose there exists an additive mapping <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>D</m:mi> <m:mo>:</m:mo> <m:mi>R</m:mi> <m:mo>→</m:mo> <m:mi>R</m:mi> </m:math> <jats:tex-math>D:R\\to R</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfying the relation <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mrow> <m:mtable displaystyle=\"true\" columnspacing=\"0.33em\"> <m:mtr> <m:mtd columnalign=\"right\"> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\"center\"> <m:mo>=</m:mo> </m:mtd> <m:mtd columnalign=\"left\"> <m:mfenced open=\"(\" close=\")\"> <m:mrow> <m:munderover> <m:mrow> <m:mstyle displaystyle=\"true\"> <m:mo>∑</m:mo> </m:mstyle> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:munderover> <m:mfenced open=\"(\" close=\")\"> <m:mfrac linethickness=\"0.0pt\"> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:mfrac> </m:mfenced> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msup> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> <m:mo>−</m:mo> <m:mi>i</m:mi> </m:mrow> </m:msup> </m:mrow> </m:mfenced> <m:mo>+</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mo>+</m:mo> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"right\" /> <m:mtd columnalign=\"center\" /> <m:mtd columnalign=\"left\"> <m:mo>+</m:mo> <m:munderover> <m:mrow> <m:mstyle displaystyle=\"true\"> <m:mo>∑</m:mo> </m:mstyle> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:munderover> <m:mfenced open=\"(\" close=\")\"> <m:mrow> <m:munderover> <m:mrow> <m:mstyle displaystyle=\"true\"> <m:mo>∑</m:mo> </m:mstyle> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:munderover> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mfenced open=\"(\" close=\")\"> <m:mfrac linethickness=\"0.0pt\"> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> </m:mrow> </m:mfrac> </m:mfenced> <m:mo>+</m:mo> <m:munderover> <m:mrow> <m:mstyle displaystyle=\"true\"> <m:mo>∑</m:mo> </m:mstyle> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> <m:mo>−</m:mo> <m:mi>i</m:mi> </m:mrow> </m:munderover> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mfenced open=\"(\" close=\")\"> <m:mfrac linethickness=\"0.0pt\"> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mi>i</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:mfrac> </m:mfenced> </m:mrow> </m:mfenced> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msup> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> <m:mo>−</m:mo> <m:mi>i</m:mi> </m:mrow> </m:msup> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:math> <jats:tex-math>\\begin{array}{rcl}{2}^{n-2}D\\left({x}^{n})&amp; =&amp; \\left(\\mathop{\\displaystyle \\sum }\\limits_{i=0}^{n-2}\\left(\\genfrac{}{}{0.0pt}{}{n-2}{i}\\right){x}^{i}D\\left({x}^{2}){x}^{n-2-i}\\right)+\\left({2}^{n-2}-1)\\left(D\\left(x){x}^{n-1}+{x}^{n-1}D\\left(x))\\\\ &amp; &amp; +\\mathop{\\displaystyle \\sum }\\limits_{i=1}^{n-2}\\left(\\mathop{\\displaystyle \\sum }\\limits_{k=2}^{i}\\left({2}^{k-1}-1)\\left(\\genfrac{}{}{0.0pt}{}{n-k-2}{i-k}\\right)+\\mathop{\\displaystyle \\sum }\\limits_{k=2}^{n-1-i}\\left({2}^{k-1}-1)\\left(\\genfrac{}{}{0.0pt}{}{n-k-2}{n-i-k-1}\\right)\\right){x}^{i}D\\left(x){x}^{n-1-i}\\end{array}</jats:tex-math> </jats:alternatives> </jats:disp-formula> for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:mi>R</m:mi> <m:mo>.</m:mo> </m:math> <jats:tex-math>x\\in R.</jats:tex-math> </jats:alternatives> </jats:inline-formula> In this case, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_007.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>D</m:mi> </m:math> <jats:tex-math>D</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a derivation. This result is related to a classical result of Herstein, which states that any Jordan derivation on a prime ring with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0166_eq_008.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"normal\">char</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>R</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≠</m:mo> <m:mn>2</m:mn> </m:math> <jats:tex-math>{\\rm{char}}\\left(R)\\ne 2</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a derivation.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On certain functional equation related to derivations\",\"authors\":\"Benjamin Marcen, Joso Vukman\",\"doi\":\"10.1515/math-2023-0166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we prove the following result. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0166_eq_001.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:math> <jats:tex-math>n\\\\ge 3</jats:tex-math> </jats:alternatives> </jats:inline-formula> be some fixed integer and let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0166_eq_002.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>R</m:mi> </m:math> <jats:tex-math>R</jats:tex-math> </jats:alternatives> </jats:inline-formula> be a prime ring with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0166_eq_003.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">char</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>R</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≠</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>+</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>!</m:mo> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>{\\\\rm{char}}\\\\left(R)\\\\ne \\\\left(n+1)\\\\&amp;#x0021;{2}^{n-2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Suppose there exists an additive mapping <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0166_eq_004.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>D</m:mi> <m:mo>:</m:mo> <m:mi>R</m:mi> <m:mo>→</m:mo> <m:mi>R</m:mi> </m:math> <jats:tex-math>D:R\\\\to R</jats:tex-math> </jats:alternatives> </jats:inline-formula> satisfying the relation <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0166_eq_005.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\"> <m:mrow> <m:mtable displaystyle=\\\"true\\\" columnspacing=\\\"0.33em\\\"> <m:mtr> <m:mtd columnalign=\\\"right\\\"> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mtd> <m:mtd columnalign=\\\"center\\\"> <m:mo>=</m:mo> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mfenced open=\\\"(\\\" close=\\\")\\\"> <m:mrow> <m:munderover> <m:mrow> <m:mstyle displaystyle=\\\"true\\\"> <m:mo>∑</m:mo> </m:mstyle> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:munderover> <m:mfenced open=\\\"(\\\" close=\\\")\\\"> <m:mfrac linethickness=\\\"0.0pt\\\"> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:mfrac> </m:mfenced> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msup> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> <m:mo>−</m:mo> <m:mi>i</m:mi> </m:mrow> </m:msup> </m:mrow> </m:mfenced> <m:mo>+</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mo>+</m:mo> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"right\\\" /> <m:mtd columnalign=\\\"center\\\" /> <m:mtd columnalign=\\\"left\\\"> <m:mo>+</m:mo> <m:munderover> <m:mrow> <m:mstyle displaystyle=\\\"true\\\"> <m:mo>∑</m:mo> </m:mstyle> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>=</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:munderover> <m:mfenced open=\\\"(\\\" close=\\\")\\\"> <m:mrow> <m:munderover> <m:mrow> <m:mstyle displaystyle=\\\"true\\\"> <m:mo>∑</m:mo> </m:mstyle> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:munderover> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mfenced open=\\\"(\\\" close=\\\")\\\"> <m:mfrac linethickness=\\\"0.0pt\\\"> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>i</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> </m:mrow> </m:mfrac> </m:mfenced> <m:mo>+</m:mo> <m:munderover> <m:mrow> <m:mstyle displaystyle=\\\"true\\\"> <m:mo>∑</m:mo> </m:mstyle> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>=</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> <m:mo>−</m:mo> <m:mi>i</m:mi> </m:mrow> </m:munderover> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msup> <m:mrow> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mfenced open=\\\"(\\\" close=\\\")\\\"> <m:mfrac linethickness=\\\"0.0pt\\\"> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mi>i</m:mi> <m:mo>−</m:mo> <m:mi>k</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:mfrac> </m:mfenced> </m:mrow> </m:mfenced> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msup> <m:mi>D</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:msup> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> <m:mo>−</m:mo> <m:mi>i</m:mi> </m:mrow> </m:msup> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:math> <jats:tex-math>\\\\begin{array}{rcl}{2}^{n-2}D\\\\left({x}^{n})&amp; =&amp; \\\\left(\\\\mathop{\\\\displaystyle \\\\sum }\\\\limits_{i=0}^{n-2}\\\\left(\\\\genfrac{}{}{0.0pt}{}{n-2}{i}\\\\right){x}^{i}D\\\\left({x}^{2}){x}^{n-2-i}\\\\right)+\\\\left({2}^{n-2}-1)\\\\left(D\\\\left(x){x}^{n-1}+{x}^{n-1}D\\\\left(x))\\\\\\\\ &amp; &amp; +\\\\mathop{\\\\displaystyle \\\\sum }\\\\limits_{i=1}^{n-2}\\\\left(\\\\mathop{\\\\displaystyle \\\\sum }\\\\limits_{k=2}^{i}\\\\left({2}^{k-1}-1)\\\\left(\\\\genfrac{}{}{0.0pt}{}{n-k-2}{i-k}\\\\right)+\\\\mathop{\\\\displaystyle \\\\sum }\\\\limits_{k=2}^{n-1-i}\\\\left({2}^{k-1}-1)\\\\left(\\\\genfrac{}{}{0.0pt}{}{n-k-2}{n-i-k-1}\\\\right)\\\\right){x}^{i}D\\\\left(x){x}^{n-1-i}\\\\end{array}</jats:tex-math> </jats:alternatives> </jats:disp-formula> for all <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0166_eq_006.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:mi>R</m:mi> <m:mo>.</m:mo> </m:math> <jats:tex-math>x\\\\in R.</jats:tex-math> </jats:alternatives> </jats:inline-formula> In this case, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0166_eq_007.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>D</m:mi> </m:math> <jats:tex-math>D</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a derivation. This result is related to a classical result of Herstein, which states that any Jordan derivation on a prime ring with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0166_eq_008.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"normal\\\">char</m:mi> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>R</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>≠</m:mo> <m:mn>2</m:mn> </m:math> <jats:tex-math>{\\\\rm{char}}\\\\left(R)\\\\ne 2</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a derivation.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2023-0166\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0166","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们将证明以下结果。设 n ≥ 3 n\ge 3 是某个固定整数,设 R R 是质环,char ( R ) ≠ ( n + 1 ) ! 2 n - 2 {\rm{char}}\left(R)\ne \left(n+1)\&#x0021;{2}^{n-2} 。假设存在一个加法映射 D : R → R D:R\to R 满足关系式 2 n - 2 D ( x n ) = ∑ i = 0 n - 2 n - 2 i x i D ( x 2 ) x n - 2 - i + ( 2 n - 2 - 1 ) ( D ( x ) x n - 1 + x n - 1 D ( x ) ) + ∑ i = 1 n - 2 ∑ k = 2 i ( 2 k - 1 - 1 ) n - k - 2 i - k + ∑ k = 2 n - 1 - i ( 2 k - 1 - 1 ) n - k - 2 n - i - k - 1 x i D ( x ) x n - 1 - i \begin{array}{rcl}{2}^{n-2}D\left({x}^{n})&;=& \left(\mathop{displaystyle \sum }\limits_{i=0}^{n-2}\left(\genfrac{}{}{0.0pt}{}{n-2}{i}\right){x}^{i}D\left({x}^{2}){x}^{n-2-i}\right)+\left({2}^{n-2}-1)\left(D\left(x){x}^{n-1}+{x}^{n-1}D\left(x))\\ & &+\mathop{\displaystyle \sum }\limits_{i=1}^{n-2}\left(\mathop{\displaystyle \sum }\limits_{k=2}^{i}\left({2}^{k-1}-1)\left(\genfrac{}{}{0.0pt}{}{n-k-2}{i-k}\right)+\mathop{\displaystyle \sum }\limits_{k=2}^{n-1-i}\left({2}^{k-1}-1)\left(\genfrac{}{}{0.0pt}{}{n-k-2}{n-i-k-1}\right){x}^{i}D\left(x){x}^{n-1-i}\end{array} for all x∈ R. x\in R. In this case, D D is a derivation.这个结果与赫斯坦的一个经典结果有关,它指出在质环上任何char ( R ) ≠ 2 {\rm{char}}\left(R)\ne 2 的乔丹导数都是一个导数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On certain functional equation related to derivations
In this article, we prove the following result. Let n 3 n\ge 3 be some fixed integer and let R R be a prime ring with char ( R ) ( n + 1 ) ! 2 n 2 {\rm{char}}\left(R)\ne \left(n+1)\&#x0021;{2}^{n-2} . Suppose there exists an additive mapping D : R R D:R\to R satisfying the relation 2 n 2 D ( x n ) = i = 0 n 2 n 2 i x i D ( x 2 ) x n 2 i + ( 2 n 2 1 ) ( D ( x ) x n 1 + x n 1 D ( x ) ) + i = 1 n 2 k = 2 i ( 2 k 1 1 ) n k 2 i k + k = 2 n 1 i ( 2 k 1 1 ) n k 2 n i k 1 x i D ( x ) x n 1 i \begin{array}{rcl}{2}^{n-2}D\left({x}^{n})& =& \left(\mathop{\displaystyle \sum }\limits_{i=0}^{n-2}\left(\genfrac{}{}{0.0pt}{}{n-2}{i}\right){x}^{i}D\left({x}^{2}){x}^{n-2-i}\right)+\left({2}^{n-2}-1)\left(D\left(x){x}^{n-1}+{x}^{n-1}D\left(x))\\ & & +\mathop{\displaystyle \sum }\limits_{i=1}^{n-2}\left(\mathop{\displaystyle \sum }\limits_{k=2}^{i}\left({2}^{k-1}-1)\left(\genfrac{}{}{0.0pt}{}{n-k-2}{i-k}\right)+\mathop{\displaystyle \sum }\limits_{k=2}^{n-1-i}\left({2}^{k-1}-1)\left(\genfrac{}{}{0.0pt}{}{n-k-2}{n-i-k-1}\right)\right){x}^{i}D\left(x){x}^{n-1-i}\end{array} for all x R . x\in R. In this case, D D is a derivation. This result is related to a classical result of Herstein, which states that any Jordan derivation on a prime ring with char ( R ) 2 {\rm{char}}\left(R)\ne 2 is a derivation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信