四元数与六元数的乘积不可能是八元数

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Artūras Dubickas, Lukas Maciulevičius
{"title":"四元数与六元数的乘积不可能是八元数","authors":"Artūras Dubickas, Lukas Maciulevičius","doi":"10.1515/math-2023-0184","DOIUrl":null,"url":null,"abstract":"In this article, we prove that the product of two algebraic numbers of degrees 4 and 6 over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0184_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"double-struck\">Q</m:mi> </m:math> <jats:tex-math>{\\mathbb{Q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> cannot be of degree 8. This completes the classification of so-called product-feasible triplets <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0184_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>a</m:mi> <m:mo>,</m:mo> <m:mi>b</m:mi> <m:mo>,</m:mo> <m:mi>c</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">N</m:mi> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>\\left(a,b,c)\\in {{\\mathbb{N}}}^{3}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0184_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>a</m:mi> <m:mo>≤</m:mo> <m:mi>b</m:mi> <m:mo>≤</m:mo> <m:mi>c</m:mi> </m:math> <jats:tex-math>a\\le b\\le c</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0184_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>b</m:mi> <m:mo>≤</m:mo> <m:mn>7</m:mn> </m:math> <jats:tex-math>b\\le 7</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The triplet <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0184_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>a</m:mi> <m:mo>,</m:mo> <m:mi>b</m:mi> <m:mo>,</m:mo> <m:mi>c</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(a,b,c)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is called product-feasible if there are algebraic numbers <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0184_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:math> <jats:tex-math>\\alpha ,\\beta </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0184_eq_007.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>γ</m:mi> </m:math> <jats:tex-math>\\gamma </jats:tex-math> </jats:alternatives> </jats:inline-formula> of degrees <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0184_eq_008.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>a</m:mi> <m:mo>,</m:mo> <m:mi>b</m:mi> </m:math> <jats:tex-math>a,b</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0184_eq_009.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>c</m:mi> </m:math> <jats:tex-math>c</jats:tex-math> </jats:alternatives> </jats:inline-formula> over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0184_eq_010.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"double-struck\">Q</m:mi> </m:math> <jats:tex-math>{\\mathbb{Q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, respectively, such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0184_eq_011.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>α</m:mi> <m:mi>β</m:mi> <m:mo>=</m:mo> <m:mi>γ</m:mi> </m:math> <jats:tex-math>\\alpha \\beta =\\gamma </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In the proof, we use a proposition that describes all monic quartic irreducible polynomials in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0184_eq_012.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi mathvariant=\"double-struck\">Q</m:mi> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>]</m:mo> </m:mrow> </m:math> <jats:tex-math>{\\mathbb{Q}}\\left[x]</jats:tex-math> </jats:alternatives> </jats:inline-formula> with four roots of equal moduli and is of independent interest. We also prove a more general statement, which asserts that for any integers <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0184_eq_013.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:math> <jats:tex-math>n\\ge 2</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0184_eq_014.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>k</m:mi> <m:mo>≥</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math>k\\ge 1</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the triplet <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0184_eq_015.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>a</m:mi> <m:mo>,</m:mo> <m:mi>b</m:mi> <m:mo>,</m:mo> <m:mi>c</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi>k</m:mi> <m:mo>,</m:mo> <m:mi>n</m:mi> <m:mi>k</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(a,b,c)=\\left(n,\\left(n-1)k,nk)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is product-feasible if and only if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0184_eq_016.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>n</m:mi> </m:math> <jats:tex-math>n</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a prime number. The choice <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0184_eq_017.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:mi>k</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>4</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(n,k)=\\left(4,2)</jats:tex-math> </jats:alternatives> </jats:inline-formula> recovers the case <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0184_eq_018.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>a</m:mi> <m:mo>,</m:mo> <m:mi>b</m:mi> <m:mo>,</m:mo> <m:mi>c</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>4</m:mn> <m:mo>,</m:mo> <m:mn>6</m:mn> <m:mo>,</m:mo> <m:mn>8</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left(a,b,c)=\\left(4,6,8)</jats:tex-math> </jats:alternatives> </jats:inline-formula> as well.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The product of a quartic and a sextic number cannot be octic\",\"authors\":\"Artūras Dubickas, Lukas Maciulevičius\",\"doi\":\"10.1515/math-2023-0184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we prove that the product of two algebraic numbers of degrees 4 and 6 over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0184_eq_001.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"double-struck\\\">Q</m:mi> </m:math> <jats:tex-math>{\\\\mathbb{Q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> cannot be of degree 8. This completes the classification of so-called product-feasible triplets <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0184_eq_002.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>a</m:mi> <m:mo>,</m:mo> <m:mi>b</m:mi> <m:mo>,</m:mo> <m:mi>c</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">N</m:mi> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:msup> </m:math> <jats:tex-math>\\\\left(a,b,c)\\\\in {{\\\\mathbb{N}}}^{3}</jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0184_eq_003.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>a</m:mi> <m:mo>≤</m:mo> <m:mi>b</m:mi> <m:mo>≤</m:mo> <m:mi>c</m:mi> </m:math> <jats:tex-math>a\\\\le b\\\\le c</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0184_eq_004.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>b</m:mi> <m:mo>≤</m:mo> <m:mn>7</m:mn> </m:math> <jats:tex-math>b\\\\le 7</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The triplet <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0184_eq_005.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>a</m:mi> <m:mo>,</m:mo> <m:mi>b</m:mi> <m:mo>,</m:mo> <m:mi>c</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\\\left(a,b,c)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is called product-feasible if there are algebraic numbers <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0184_eq_006.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:math> <jats:tex-math>\\\\alpha ,\\\\beta </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0184_eq_007.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>γ</m:mi> </m:math> <jats:tex-math>\\\\gamma </jats:tex-math> </jats:alternatives> </jats:inline-formula> of degrees <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0184_eq_008.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>a</m:mi> <m:mo>,</m:mo> <m:mi>b</m:mi> </m:math> <jats:tex-math>a,b</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0184_eq_009.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>c</m:mi> </m:math> <jats:tex-math>c</jats:tex-math> </jats:alternatives> </jats:inline-formula> over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0184_eq_010.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"double-struck\\\">Q</m:mi> </m:math> <jats:tex-math>{\\\\mathbb{Q}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>, respectively, such that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0184_eq_011.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>α</m:mi> <m:mi>β</m:mi> <m:mo>=</m:mo> <m:mi>γ</m:mi> </m:math> <jats:tex-math>\\\\alpha \\\\beta =\\\\gamma </jats:tex-math> </jats:alternatives> </jats:inline-formula>. In the proof, we use a proposition that describes all monic quartic irreducible polynomials in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0184_eq_012.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi mathvariant=\\\"double-struck\\\">Q</m:mi> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>]</m:mo> </m:mrow> </m:math> <jats:tex-math>{\\\\mathbb{Q}}\\\\left[x]</jats:tex-math> </jats:alternatives> </jats:inline-formula> with four roots of equal moduli and is of independent interest. We also prove a more general statement, which asserts that for any integers <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0184_eq_013.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>n</m:mi> <m:mo>≥</m:mo> <m:mn>2</m:mn> </m:math> <jats:tex-math>n\\\\ge 2</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0184_eq_014.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>k</m:mi> <m:mo>≥</m:mo> <m:mn>1</m:mn> </m:math> <jats:tex-math>k\\\\ge 1</jats:tex-math> </jats:alternatives> </jats:inline-formula>, the triplet <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0184_eq_015.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>a</m:mi> <m:mo>,</m:mo> <m:mi>b</m:mi> <m:mo>,</m:mo> <m:mi>c</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mi>k</m:mi> <m:mo>,</m:mo> <m:mi>n</m:mi> <m:mi>k</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\\\left(a,b,c)=\\\\left(n,\\\\left(n-1)k,nk)</jats:tex-math> </jats:alternatives> </jats:inline-formula> is product-feasible if and only if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0184_eq_016.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>n</m:mi> </m:math> <jats:tex-math>n</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a prime number. The choice <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0184_eq_017.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>n</m:mi> <m:mo>,</m:mo> <m:mi>k</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>4</m:mn> <m:mo>,</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\\\left(n,k)=\\\\left(4,2)</jats:tex-math> </jats:alternatives> </jats:inline-formula> recovers the case <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0184_eq_018.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>a</m:mi> <m:mo>,</m:mo> <m:mi>b</m:mi> <m:mo>,</m:mo> <m:mi>c</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>=</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>4</m:mn> <m:mo>,</m:mo> <m:mn>6</m:mn> <m:mo>,</m:mo> <m:mn>8</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\\\left(a,b,c)=\\\\left(4,6,8)</jats:tex-math> </jats:alternatives> </jats:inline-formula> as well.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2023-0184\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0184","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们证明了在 Q {\mathbb{Q}} 上,度数为 4 和 6 的两个代数数的乘积不可能是度数为 8 的。这就完成了在{{mathbb{N}}^{3}中 a ≤ b ≤ c ale b\le c 和 b ≤ 7 b\le 7 的所谓乘积可行三元组 ( a , b , c ) ∈ N 3 \left(a,b,c)\ 的分类。如果在 Q {\mathbb{Q} 上存在代数数 α , β \alpha , \beta , 和 γ \gamma 的度数分别为 a , b a,b , 和 c c c ,那么三元组 ( a , b , c ) \left(a,b,c)被称为乘积可行。} 分别,使得 α β = γ \alpha \beta = \gamma 。在证明过程中,我们使用了一个命题,它描述了 Q [ x ] {\mathbb{Q}} 左[x]中所有具有相等模数的四根的一元四次不可还原多项式,并且具有独立的意义。我们还证明了一个更一般的说法,即对于任意整数 n ≥ 2 n\ge 2 和 k ≥ 1 k\ge 1,三元组 ( a , b , c ) = ( n , ( n - 1 ) k , n k ) \left(a,b,c)=\left(n,\left(n-1)k,nk) 是乘积可行的,当且仅当 n n 是一个素数。选择 ( n , k ) = ( 4 , 2 ) \left(n,k)=\left(4,2)也可以恢复 ( a , b , c ) = ( 4 , 6 , 8 ) \left(a,b,c)=\left(4,6,8)的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The product of a quartic and a sextic number cannot be octic
In this article, we prove that the product of two algebraic numbers of degrees 4 and 6 over Q {\mathbb{Q}} cannot be of degree 8. This completes the classification of so-called product-feasible triplets ( a , b , c ) N 3 \left(a,b,c)\in {{\mathbb{N}}}^{3} with a b c a\le b\le c and b 7 b\le 7 . The triplet ( a , b , c ) \left(a,b,c) is called product-feasible if there are algebraic numbers α , β \alpha ,\beta , and γ \gamma of degrees a , b a,b , and c c over Q {\mathbb{Q}} , respectively, such that α β = γ \alpha \beta =\gamma . In the proof, we use a proposition that describes all monic quartic irreducible polynomials in Q [ x ] {\mathbb{Q}}\left[x] with four roots of equal moduli and is of independent interest. We also prove a more general statement, which asserts that for any integers n 2 n\ge 2 and k 1 k\ge 1 , the triplet ( a , b , c ) = ( n , ( n 1 ) k , n k ) \left(a,b,c)=\left(n,\left(n-1)k,nk) is product-feasible if and only if n n is a prime number. The choice ( n , k ) = ( 4 , 2 ) \left(n,k)=\left(4,2) recovers the case ( a , b , c ) = ( 4 , 6 , 8 ) \left(a,b,c)=\left(4,6,8) as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信