论图形的最大原子键和连接指数

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tariq Alraqad, Hicham Saber, Akbar Ali, Abeer M. Albalahi
{"title":"论图形的最大原子键和连接指数","authors":"Tariq Alraqad, Hicham Saber, Akbar Ali, Abeer M. Albalahi","doi":"10.1515/math-2023-0179","DOIUrl":null,"url":null,"abstract":"The atom-bond sum-connectivity (ABS) index of a graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0179_eq_001.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula> with edges <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0179_eq_002.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo form=\"prefix\">,</m:mo> <m:mrow> <m:mo>…</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mi>m</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{e}_{1},\\ldots ,{e}_{m}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the sum of the numbers <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0179_eq_003.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msqrt> <m:mrow> <m:mn>1</m:mn> <m:mo>−</m:mo> <m:mn>2</m:mn> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>d</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> </m:mrow> </m:msqrt> </m:math> <jats:tex-math>\\sqrt{1-2{\\left({d}_{{e}_{i}}+2)}^{-1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0179_eq_004.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>i</m:mi> <m:mo>≤</m:mo> <m:mi>m</m:mi> </m:math> <jats:tex-math>1\\le i\\le m</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0179_eq_005.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>d</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> </m:mrow> </m:msub> </m:math> <jats:tex-math>{d}_{{e}_{i}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the number of edges adjacent to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2023-0179_eq_006.png\" /> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{e}_{i}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this article, we study the maximum values of the ABS index over graphs with given parameters. More specifically, we determine the maximum ABS index of connected graphs of a given order with a fixed (i) minimum degree, (ii) maximum degree, (iii) chromatic number, (iv) independence number, or (v) number of pendent vertices. We also characterize the graphs attaining the maximum ABS values in all of these classes.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the maximum atom-bond sum-connectivity index of graphs\",\"authors\":\"Tariq Alraqad, Hicham Saber, Akbar Ali, Abeer M. Albalahi\",\"doi\":\"10.1515/math-2023-0179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The atom-bond sum-connectivity (ABS) index of a graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0179_eq_001.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>G</m:mi> </m:math> <jats:tex-math>G</jats:tex-math> </jats:alternatives> </jats:inline-formula> with edges <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0179_eq_002.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mn>1</m:mn> </m:mrow> </m:msub> <m:mo form=\\\"prefix\\\">,</m:mo> <m:mrow> <m:mo>…</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mi>m</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{e}_{1},\\\\ldots ,{e}_{m}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the sum of the numbers <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0179_eq_003.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msqrt> <m:mrow> <m:mn>1</m:mn> <m:mo>−</m:mo> <m:mn>2</m:mn> <m:msup> <m:mrow> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>d</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> </m:mrow> </m:msub> <m:mo>+</m:mo> <m:mn>2</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mrow> <m:mo>−</m:mo> <m:mn>1</m:mn> </m:mrow> </m:msup> </m:mrow> </m:msqrt> </m:math> <jats:tex-math>\\\\sqrt{1-2{\\\\left({d}_{{e}_{i}}+2)}^{-1}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0179_eq_004.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:mi>i</m:mi> <m:mo>≤</m:mo> <m:mi>m</m:mi> </m:math> <jats:tex-math>1\\\\le i\\\\le m</jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0179_eq_005.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi>d</m:mi> </m:mrow> <m:mrow> <m:msub> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> </m:mrow> </m:msub> </m:math> <jats:tex-math>{d}_{{e}_{i}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> is the number of edges adjacent to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2023-0179_eq_006.png\\\" /> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi>e</m:mi> </m:mrow> <m:mrow> <m:mi>i</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{e}_{i}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. In this article, we study the maximum values of the ABS index over graphs with given parameters. More specifically, we determine the maximum ABS index of connected graphs of a given order with a fixed (i) minimum degree, (ii) maximum degree, (iii) chromatic number, (iv) independence number, or (v) number of pendent vertices. We also characterize the graphs attaining the maximum ABS values in all of these classes.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2023-0179\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2023-0179","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有边 e 1 , ... , e m {e}_{1},\ldots ,{e}_{m} 的图 G G 的原子-键总和-连通性(ABS)指数是 , e m {e}_{1},\ldots ,{e}_{m} 是 1 - 2 ( d e i + 2 ) - 1 \sqrt{1-2\{left({d}_{e}_{i}+2)}^{-1}}}在 1 ≤ i ≤ m 1\le i\le m 上的数字之和,其中 d e i {d}_{e}_{i}} 是与 e i {e}_{i} 相邻的边的数目。在本文中,我们将研究具有给定参数的图中 ABS 指数的最大值。更具体地说,我们确定了具有固定(i)最小度、(ii)最大度、(iii)色度数、(iv)独立性数或(v)下垂顶点数的给定阶数连通图的最大 ABS 指数。我们还描述了在所有这些类别中达到最大 ABS 值的图的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the maximum atom-bond sum-connectivity index of graphs
The atom-bond sum-connectivity (ABS) index of a graph G G with edges e 1 , , e m {e}_{1},\ldots ,{e}_{m} is the sum of the numbers 1 2 ( d e i + 2 ) 1 \sqrt{1-2{\left({d}_{{e}_{i}}+2)}^{-1}} over 1 i m 1\le i\le m , where d e i {d}_{{e}_{i}} is the number of edges adjacent to e i {e}_{i} . In this article, we study the maximum values of the ABS index over graphs with given parameters. More specifically, we determine the maximum ABS index of connected graphs of a given order with a fixed (i) minimum degree, (ii) maximum degree, (iii) chromatic number, (iv) independence number, or (v) number of pendent vertices. We also characterize the graphs attaining the maximum ABS values in all of these classes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信