{"title":"Colorimetric aptasensing of microcystin-LR using DNA-conjugated polydiacetylene.","authors":"Man Zhang, Qicheng Zhang, Lei Ye","doi":"10.1007/s00216-024-05617-x","DOIUrl":"10.1007/s00216-024-05617-x","url":null,"abstract":"<p><p>Polydiacetylene (PDA) holds promise as a versatile material for biosensing applications due to its unique optical properties and self-assembly capabilities. In this study, we developed a colorimetric detection biosensor system utilizing PDA and aptamer for the detection of microcystin-LR (MC-LR), a potent hepatotoxin found in cyanobacteria-contaminated environments. The biosensor was constructed by immobilizing MC-LR-specific aptamer on magnetic beads, where the aptamer was hybridized with a urease-labelled complementary DNA (cDNA-urease). Upon binding MC-LR, the aptamer undergoes a conformational change to release cDNA-urease. The released cDNA-urease is subsequently captured by PDA bearing a single-stranded DNA (ssDNA). The enzymatic reaction triggers a distinctive color transition of PDA from blue to red. The results demonstrate exceptional sensitivity, with a linear detection range of 5-100 ng/mL and a limit of detection as low as 1 ng/mL. The practicability of the colorimetric method was demonstrated by detecting different levels of MC-LR in spiked water samples. The recoveries ranged from 77.3 to 102% and the color change, visible to the naked eye, underscores the practical utility for on-site applications. Selectivity for MC-LR over other microcystin variants (MC-RR and MC-YR) was confirmed. The colorimetric detection platform capitalizes on the properties of PDA and nucleic acid, offering a robust method for detecting small molecules with potential applications in environmental monitoring and public health.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"7131-7140"},"PeriodicalIF":3.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579182/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joy Q Li, Supriya Atta, Yuanhao Zhao, Khang Hoang, Aidan Canning, Pietro Strobbia, Julia E Canick, Jung-Hae Cho, Daniel J Rocke, Walter T Lee, Tuan Vo-Dinh
{"title":"Plasmonics-enhanced spikey nanorattle-based biosensor for direct SERS detection of mRNA cancer biomarkers.","authors":"Joy Q Li, Supriya Atta, Yuanhao Zhao, Khang Hoang, Aidan Canning, Pietro Strobbia, Julia E Canick, Jung-Hae Cho, Daniel J Rocke, Walter T Lee, Tuan Vo-Dinh","doi":"10.1007/s00216-024-05549-6","DOIUrl":"10.1007/s00216-024-05549-6","url":null,"abstract":"<p><p>We present a plasmonics-enhanced spikey nanorattle-based biosensor for direct surface-enhanced Raman scattering (SERS) detection of mRNA cancer biomarkers. Early detection of cancers such as head and neck squamous cell carcinoma (HNSCC) is critical for improving patient outcomes in regions with limited access to traditional diagnostic methods. Our method targets Keratin 14 (KRT14), a promising diagnostic mRNA biomarker for HNSCC, using a sandwich hybridization approach with magnetic beads and SERS spikey nanorattles (SpNR). We synthesized SpNR with a core-gap-shell structure to enhance SERS signals, achieving a limit of detection of 90 femtomolar. A pilot study using clinical samples demonstrated the efficacy of our biosensor in distinguishing between tissue with positive or negative diagnosis for HNSCC, highlighting its potential for rapid and sensitive cancer diagnostics in low-resource settings. This plasmonic assay offers a promising avenue for portable and high-specificity detection of nucleic acid biomarkers, with implications for early cancer detection and improved patient care, especially in middle and low-resource settings.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"7347-7355"},"PeriodicalIF":3.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Claire Davison, Jordan Pascoe, Melanie Bailey, Dany J V Beste, Mónica Felipe-Sotelo
{"title":"Single cell-inductively coupled plasma-mass spectrometry (SC-ICP-MS) reveals metallic heterogeneity in a macrophage model of infectious diseases.","authors":"Claire Davison, Jordan Pascoe, Melanie Bailey, Dany J V Beste, Mónica Felipe-Sotelo","doi":"10.1007/s00216-024-05592-3","DOIUrl":"10.1007/s00216-024-05592-3","url":null,"abstract":"<p><p>Single cell-inductively coupled plasma-mass spectrometry (SC-ICP-MS) offers an attractive option for rapidly measuring trace metal heterogeneity at the single cell level. Chemical fixation has been previously applied to mammalian cells prior to sample introduction so that they can be resuspended in a solution suitable for SC-ICP-MS. However, the effect of fixation on the elemental composition of suspended cells is unknown, and robust methodologies are urgently needed so that the community can measure the effects of intracellular pathogens on elemental composition of their host cells. We demonstrate that different fixatives impact measured cell elemental composition. We have compared suspensions treated using different fixatives (methanol 60-100% in H<sub>2</sub>O and 4% paraformaldehyde in phosphate-buffered saline solution), and the number of distinguishable single cell events, keeping a constant particle number concentration. Significantly more single cell events (n = 3, P ≤ 0.05) were observed for Ca and Mg when cells were fixed in 4% paraformaldehyde than for the methanol-based fixatives, confirming the hypothesis that methanol fixatives cause leaching of these elements from the cells. The impact of fixation on Mn and Zn was less pronounced. Microbial and viral infection of eukaryotic cells can have profound effects on their elemental composition, but chemical fixation is necessary to render infected cells safe before analysis. We have successfully applied our methodology to a macrophage model of tuberculosis demonstrating utility in understanding metal homeostasis during microbial infection of mammalian cells.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"6945-6955"},"PeriodicalIF":3.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579058/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enzyme-free immunoassay for rapid, sensitive, and selective detection of C-reactive protein.","authors":"Sathishkumar Munusamy, Haiyan Zheng, Rana Jahani, Shuo Zhou, Jun Chen, Juanhua Kong, Xiyun Guan","doi":"10.1007/s00216-024-05598-x","DOIUrl":"10.1007/s00216-024-05598-x","url":null,"abstract":"<p><p>C-reactive protein (CRP) is a protein made by the liver, which is released into the bloodstream in response to inflammation. Furthermore, CRP is a potential risk factor for heart disease. Hence, it is of great importance to develop a rapid, sensitive, accurate, and cost-effective method for CRP detection. Herein, we report an enzyme-free fluorescent assay for the rapid and ultra-sensitive detection of CRP with a limit of detection (LOD) reaching as low as 3.08 pg/mL (i.e., ~ 27 fM). The high sensitivity of our method was simply achieved via dual-functionalized gold nanoparticles (AuNPs). By regulating the molar ratio of DNA to CRP antibody immobilized on the AuNP surface, hundreds to thousands-fold amplification in the analyte signal could be instantly accomplished. Furthermore, our sensor was selective: non-target proteins such as interleukin-6, interleukin-1β, procalcitonin, bovine serum albumin, and human serum albumin did not interfere with the target CRP detection. Moreover, simulated serum samples were successfully analyzed. Given the excellent sensitivity, selectivity, and high resistance to complicated matrices, the enzyme-free CRP detection strategy developed in this work can be used as a generic platform to construct sensors for a wide variety of protein biomarkers and hence offers potential as a tool for rapid, accurate, and low-cost medical diagnosis.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"6985-6994"},"PeriodicalIF":3.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiaofang Yan, Fei Huang, Chuyang Wang, Min Zhan, Qiaoxuan Zhang, Di Huang, Jun Yan, Haibiao Lin, Xianzhang Huang, Liqiao Han
{"title":"Clinical application of an optimized reference measurement procedure for serum digoxin using bracketing calibration method by ID-LC-MS/MS.","authors":"Qiaofang Yan, Fei Huang, Chuyang Wang, Min Zhan, Qiaoxuan Zhang, Di Huang, Jun Yan, Haibiao Lin, Xianzhang Huang, Liqiao Han","doi":"10.1007/s00216-024-05587-0","DOIUrl":"10.1007/s00216-024-05587-0","url":null,"abstract":"<p><p>Digoxin, a cardiac glycoside, is widely used in the treatment of cardiovascular diseases. Due to its narrow therapeutic range, precise monitoring of its blood concentration is essential. A reference measurement procedure (RMP) is pivotal for ensuring result accuracy and comparability. The RMP for serum digoxin by ID-LC-MS/MS was optimized with sample pre-treatment and detection processes, and the bracketing calibration method was used, which facilitates more accurate measurement, especially for extreme concentrations. The performance of this optimized RMP was thoroughly evaluated. The limit of detection (LoD) was 0.05 ng/mL (0.06 nmol/L) and the lowest limit of quantification (LLoQ) was 0.10 ng/mL (0.13 nmol/L). The intra- and inter-assay imprecisions were 2.24%, 2.51%, 1.40% and 1.72%, 1.65%, 0.97% at 0.5, 2.0, 5.0 ng/mL, respectively. Recoveries were 99.63 to 101.42% and the linear response ranged from 0.1 to 10.0 ng/mL. The relative bias was 0.41% and 2.00% of our results compared with the median of all participating reference laboratories for IFCC-RELA (External Quality Assessment Scheme for Reference Laboratories in Laboratory Medicine) 2023A and 2023B. The uncertainty, calibration and measurement capability (CMC) of this method were also evaluated. The optimized RMP was applied in the Trueness Verification Plan of Southern China, which indicates significant differences among clinical systems, highlighting the need for standardization efforts. In addition, two commonly used clinical systems which employed immunoassay methods were compared with this optimized RMP, and 26 individual serum samples were analyzed. The good correlations indicate the feasibility of standardization for serum digoxin. The optimized RMP serves as an accurate reference baseline for routine methods, aiming to enhance the accuracy and precision of measurements in clinical laboratories.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"6909-6918"},"PeriodicalIF":3.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The pros and cons of nucleic acid-amplified immunoassays-a comparative study on the quantitation of prostate-specific antigen with and without rolling circle amplification.","authors":"Mariia Dekaliuk, Zdeněk Farka, Niko Hildebrandt","doi":"10.1007/s00216-024-05357-y","DOIUrl":"10.1007/s00216-024-05357-y","url":null,"abstract":"<p><p>Integrating isothermal nucleic acid amplification strategies into immunoassays can significantly decrease analytical limits of detection (LODs). On the other hand, an amplification step adds time, complication, reagents, and costs to the assay format. To evaluate the pros and cons in the context of heterogeneous multistep immunoassays, we quantified prostate-specific antigen (PSA) with and without rolling circle amplification (RCA). In addition, we compared time-gated (TG) with continuous-wave (CW) photoluminescence (PL) detection using a terbium complex and a fluorescein dye, respectively. For both direct (non-amplified) and amplified assays, TG PL detection provided circa four- to eightfold lower LODs, illustrating the importance of autofluorescence background suppression even for multi-wash assay formats. Amplified assays required an approximately 2.4 h longer assay time but led to almost 100-fold lower LODs down to 1.3 pg/mL of PSA. Implementation of TG-FRET (using a Tb-Cy5.5 donor-acceptor pair) into the RCA immunoassay resulted in a slightly higher LOD (3.0 pg/mL), but the ratiometric detection format provided important benefits, such as higher reproducibility, lower standard deviations, and multiplexing capability. Overall, our direct comparison demonstrated the importance of biological background suppression even in heterogeneous assays and the potential of using isothermal RCA for strongly decreasing analytical LODs, making such assays viable alternatives to conventional enzyme-linked immunosorbent assays (ELISAs).</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"7285-7294"},"PeriodicalIF":3.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584466/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141287585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Domínguez, D Moraru, S Lasso, I Sanz-Vicente, S de Marcos, J Galbán
{"title":"Colorimetric enzymatic rapid test for the determination of atropine in baby food using a smartphone.","authors":"M Domínguez, D Moraru, S Lasso, I Sanz-Vicente, S de Marcos, J Galbán","doi":"10.1007/s00216-024-05401-x","DOIUrl":"10.1007/s00216-024-05401-x","url":null,"abstract":"<p><p>A method for the enzymatic determination of atropine has been developed, which is based on a sequence of reactions involving (1) the hydrolysis of atropine to give tropine; (2) the enzymatic oxidation of tropine with NAD (catalysed by tropinone reductase); and (3) an indicator reaction, in which the NADH previously formed reduces the dye iodonitrotetrazolium chloride (INT) to a reddish species, the reaction catalysed by diaphorase. The method was first developed in solution (linear response range from 2.4 × 10<sup>-6</sup> M to 1.0 × 10<sup>-4</sup> M). It was then implemented in cellulose platforms to develop a rapid test where the determination is made by measuring the RGB coordinates of the platforms using a smartphone-based device. The device is based on the integrating sphere concept and contains a light source to avoid external illumination effects. The smartphone is controlled by an app that allows a calibration line to be generated and the atropine concentration to be quantified; moreover, since the app normalizes the CCD response of the smartphone, the results and calibrations obtained with different smartphones are similar and can be shared. Using the G coordinate, the results were shown to have a linear response with the concentration of atropine ranging from 1.2 × 10<sup>-5</sup> M to 3.0 × 10<sup>-4</sup> M with an RSD of 1.4% (n = 5). The method has been applied to the determination of atropine in baby food and buckwheat samples with good results.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"7317-7323"},"PeriodicalIF":3.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584467/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Aptamer-based sensitive fluorescence β-lactoglobulin food allergen bioassay via dual and cyclic bidirectional strand displacement amplifications.","authors":"Xiaoju Liu, Qianying Wang, Tingting Gong, Bingying Jiang, Ruo Yuan, Yun Xiang","doi":"10.1007/s00216-024-05618-w","DOIUrl":"10.1007/s00216-024-05618-w","url":null,"abstract":"<p><p>β-Lactoglobulin (β-Lg) is a prevalent allergenic protein found in most dairy products, which poses great food safety risks for individuals with allergies, especially for infants. Sensitive and effective detection methods for such allergens are essential to reduce the risk of allergies in daily life. Herein, a fluorescent aptamer bioassay based on a dual and cyclic bidirectional strand displacement means is developed for the sensitive detection of β-Lg in infant rice porridge and milk. The aptamer in the duplex DNA probe binds β-Lg to release the assistance strand to further hybridize with two hairpins, which triggers the initiation of two cyclic amplification cycles through the polymerization, displacement, and nicking of the strands under the action of DNA polymerase and endonuclease restriction enzymes. The amplification cycles lead to the unfolding of many fluorescently quenched signal probes to exhibit substantially enhanced fluorescence recovery for detecting β-Lg. The assay can realize detection of β-Lg in concentrations as low as 4.41 pM within the range of 0.01 to 10 nM. Furthermore, our sensing method has the capability to discriminate β-Lg from other proteins with high selectivity, resulting in low levels of β-Lg detection in rice porridge and milk samples, demonstrating promising potentials of the developed sensing method for monitoring various food allergens.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"7141-7149"},"PeriodicalIF":3.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A Y Reséndiz-Jaramillo, A P Mendoza-Camargo, O E Ortiz-Contreras, J A Rodríguez-Morales, Eric L Huerta-Manzanilla, Ricardo A Escalona-Villalpando, J Ledesma-García
{"title":"The importance of factorial design on the optimization of biosensor performance: immobilization of glucose oxidase as a case study.","authors":"A Y Reséndiz-Jaramillo, A P Mendoza-Camargo, O E Ortiz-Contreras, J A Rodríguez-Morales, Eric L Huerta-Manzanilla, Ricardo A Escalona-Villalpando, J Ledesma-García","doi":"10.1007/s00216-024-05582-5","DOIUrl":"10.1007/s00216-024-05582-5","url":null,"abstract":"<p><p>Conventionally, the optimization of glucose biosensors is achieved by varying the concentrations of the individual reagents used to immobilize the enzyme. In this work, the effect and interaction between glucose oxidase enzyme (GOx), ferrocene methanol (Fc), and multi-walled carbon nanotubes (MWCNTs) at different concentrations were investigated by a design of experiments (DoE). For this analysis, a factorial design with three factors and two levels each was used with the software RStudio for statistical analysis. The data were obtained by electrochemical experiments on the immobilization of GOx-Fc/MWCNT at different concentrations. The results showed that the factorial DoE method was confirmed by the non-normality of the residuals and the outliers of the experiment. When examining the effects of the variables, analyzing the half-normal distribution and the effects and contrasts for GOx-Fc/MWCNT, the factors that showed the greatest influence on the electrochemical response were GOx, MWCNT, Fc, and MWCNT:Fc, and there is a high correlation between the factors GOx, MWCNT, Fc, and MWCNT:Fc, as shown by the analysis of homoscedasticity and multicollinearity. With these statistical analyses and experimental designs, it was possible to find the optimal conditions for different factors: 10 mM mL<sup>-1</sup> GOx, 2 mg mL<sup>-1</sup> Fc, and 15 mg mL<sup>-1</sup> MWCNT show a greater amperometric response in the glucose oxidation. This work contributes to advancing enzyme immobilization strategies for glucose biosensor applications. Systematic investigation of DoE leads to optimized immobilization for GOx, enables better performance as a glucose biosensor, and allows the prediction of some outcomes.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"6849-6858"},"PeriodicalIF":3.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicolás Franck, Pascal Stopper, Lukas Ude, Raul Urteaga, Pablo A Kler, Carolin Huhn
{"title":"Paper-based isotachophoretic preconcentration technique for low-cost determination of glyphosate.","authors":"Nicolás Franck, Pascal Stopper, Lukas Ude, Raul Urteaga, Pablo A Kler, Carolin Huhn","doi":"10.1007/s00216-024-05544-x","DOIUrl":"10.1007/s00216-024-05544-x","url":null,"abstract":"<p><p>Electrophoretic microfluidic paper-based analytical devices (e-µPADs) are promising for low-cost and portable technologies, but quantitative detection remains challenging. In this study, we develop a paper-based isotachophoretic preconcentration and separation method for the herbicide glyphosate as a model analyte. The device, consisting of two electrode chambers filled with leading and terminating electrolytes and a nitrocellulose strip as the separation carrier, was illuminated by a flat light source and operated with a voltage supply of 400 V. Detection was accomplished using a simple camera. Colorimetric detection was optimized through competitive complexation between glyphosate, copper ions, and pyrocatechol violet as a dye. The buffer system was optimized using simulations, (i) ensuring the pH was optimal for the demetallation of the blue pyrocatechol violet-copper complex [PV] to the yellow free dye and (ii) ensuring the electrophoretic migration of glyphosate into the slower [PV] for the colorimetric reaction. A new data evaluation method is presented, analyzing the RGB channel intensities. The linear range was between 0.8 and 25 µM, with a LOD of approximately 0.8 µM. The ITP separation preconcentrated glyphosate by a factor of 820 in numerical simulations. The method may be applied to control glyphosate formulations, especially in developing countries where herbicide sales and applications are poorly regulated.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"6745-6757"},"PeriodicalIF":3.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579070/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}