通过IR-MALDESI定量MSI演示肝组织体素-逐体素(V × V)单点校准。

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Emily R Bruce, Russell R Kibbe, Logan J Opperman, David C Muddiman
{"title":"通过IR-MALDESI定量MSI演示肝组织体素-逐体素(V × V)单点校准。","authors":"Emily R Bruce, Russell R Kibbe, Logan J Opperman, David C Muddiman","doi":"10.1007/s00216-025-06138-x","DOIUrl":null,"url":null,"abstract":"<p><p>Quantitative mass spectrometry imaging (qMSI) provides information regarding the colocalization, relative abundance, and concentration of a target analyte in a tissue without homogenization. Ionization sources, including IR-MALDESI, commonly utilize an on-tissue spatial calibration curve approach; however, this approach has several limitations including tedious sample preparation, and this approach does not account for local matrix effects. To compensate for these two limitations, we developed voxel-by-voxel (V × V) quantification to provide an internal standard calibration point for every voxel which requires a simple sample preparation and accounts for local matrix effects. In this work, we evaluate the performance of V × V quantification against the spatial calibration curve to assess the quantitative capacity of this newly developed method. Quantification of glutathione (GSH) on a per-voxel basis involves homogenously spraying a known amount of stable isotope-labeled glutathione (SIL-GSH) on a microscope slide. Next, we mount liver sections on top of the coated slides and image them using IR-MALDESI MSI. Statistical analysis demonstrated high precision for V × V quantification over a wide concentration range; however, the method's accuracy is currently limited due to the sprayer's configuration. Results support the feasibility of V × V quantification as evidenced by concentration heatmaps. Additionally, V × V quantification allows for parallel reaction monitoring (PRM) imaging which provides high specificity. Combined with relativity, straightforward sample preparation, and promising initial statistics, the V × V method offers significant advantages over spatial calibration curves.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demonstrating voxel-by-voxel (V × V) single-point calibration in liver tissue by IR-MALDESI quantitative MSI.\",\"authors\":\"Emily R Bruce, Russell R Kibbe, Logan J Opperman, David C Muddiman\",\"doi\":\"10.1007/s00216-025-06138-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Quantitative mass spectrometry imaging (qMSI) provides information regarding the colocalization, relative abundance, and concentration of a target analyte in a tissue without homogenization. Ionization sources, including IR-MALDESI, commonly utilize an on-tissue spatial calibration curve approach; however, this approach has several limitations including tedious sample preparation, and this approach does not account for local matrix effects. To compensate for these two limitations, we developed voxel-by-voxel (V × V) quantification to provide an internal standard calibration point for every voxel which requires a simple sample preparation and accounts for local matrix effects. In this work, we evaluate the performance of V × V quantification against the spatial calibration curve to assess the quantitative capacity of this newly developed method. Quantification of glutathione (GSH) on a per-voxel basis involves homogenously spraying a known amount of stable isotope-labeled glutathione (SIL-GSH) on a microscope slide. Next, we mount liver sections on top of the coated slides and image them using IR-MALDESI MSI. Statistical analysis demonstrated high precision for V × V quantification over a wide concentration range; however, the method's accuracy is currently limited due to the sprayer's configuration. Results support the feasibility of V × V quantification as evidenced by concentration heatmaps. Additionally, V × V quantification allows for parallel reaction monitoring (PRM) imaging which provides high specificity. Combined with relativity, straightforward sample preparation, and promising initial statistics, the V × V method offers significant advantages over spatial calibration curves.</p>\",\"PeriodicalId\":462,\"journal\":{\"name\":\"Analytical and Bioanalytical Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical and Bioanalytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00216-025-06138-x\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-025-06138-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

定量质谱成像(qMSI)提供了关于共定位、相对丰度和目标分析物在组织中没有均质化的浓度的信息。电离源,包括IR-MALDESI,通常使用组织空间校准曲线方法;然而,这种方法有一些局限性,包括繁琐的样品制备,并且这种方法不能考虑局部矩阵效应。为了弥补这两个限制,我们开发了体素-逐体素(V × V)量化,为每个体素提供一个内部标准校准点,这需要简单的样品制备并考虑局部矩阵效应。在这项工作中,我们根据空间校准曲线评估V × V定量的性能,以评估这种新开发的方法的定量能力。定量谷胱甘肽(GSH)在每体素的基础上,包括均匀喷涂已知数量的稳定同位素标记谷胱甘肽(SIL-GSH)在显微镜载玻片上。接下来,我们将肝脏切片安装在包被的载玻片上,并使用IR-MALDESI MSI对其成像。统计分析表明,在较宽的浓度范围内,V × V定量具有较高的精度;然而,由于喷雾器的配置,该方法的准确性目前受到限制。通过浓度热图验证了V × V定量的可行性。此外,V × V定量允许平行反应监测(PRM)成像,提供高特异性。相对于空间校准曲线,V × V方法具有相关性、样品制备简单、初始统计量大等优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demonstrating voxel-by-voxel (V × V) single-point calibration in liver tissue by IR-MALDESI quantitative MSI.

Quantitative mass spectrometry imaging (qMSI) provides information regarding the colocalization, relative abundance, and concentration of a target analyte in a tissue without homogenization. Ionization sources, including IR-MALDESI, commonly utilize an on-tissue spatial calibration curve approach; however, this approach has several limitations including tedious sample preparation, and this approach does not account for local matrix effects. To compensate for these two limitations, we developed voxel-by-voxel (V × V) quantification to provide an internal standard calibration point for every voxel which requires a simple sample preparation and accounts for local matrix effects. In this work, we evaluate the performance of V × V quantification against the spatial calibration curve to assess the quantitative capacity of this newly developed method. Quantification of glutathione (GSH) on a per-voxel basis involves homogenously spraying a known amount of stable isotope-labeled glutathione (SIL-GSH) on a microscope slide. Next, we mount liver sections on top of the coated slides and image them using IR-MALDESI MSI. Statistical analysis demonstrated high precision for V × V quantification over a wide concentration range; however, the method's accuracy is currently limited due to the sprayer's configuration. Results support the feasibility of V × V quantification as evidenced by concentration heatmaps. Additionally, V × V quantification allows for parallel reaction monitoring (PRM) imaging which provides high specificity. Combined with relativity, straightforward sample preparation, and promising initial statistics, the V × V method offers significant advantages over spatial calibration curves.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
4.70%
发文量
638
审稿时长
2.1 months
期刊介绍: Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信