Cleusa F Zanchin, Luana Floriano, Bruna S de Farias, Luiz A A Pinto, Tito R S Cadaval, Osmar D Prestes, Renato Zanella
{"title":"Carbon nanotubes stabilized in chitosan sponge (CNT-CS) as a new alternative clean-up sorbent for pesticide multiresidue determination in eggplants using QuEChERS and UHPLC-MS/MS.","authors":"Cleusa F Zanchin, Luana Floriano, Bruna S de Farias, Luiz A A Pinto, Tito R S Cadaval, Osmar D Prestes, Renato Zanella","doi":"10.1007/s00216-025-05736-z","DOIUrl":"https://doi.org/10.1007/s00216-025-05736-z","url":null,"abstract":"<p><p>The continuous development and application of pesticides in agriculture require robust multiresidue detection methods to guarantee food safety. This study introduces a novel method for multiresidue determination of pesticides in eggplants using the QuEChERS procedure, incorporating a clean-up step using carbon nanotubes stabilized in chitosan sponge (CNT-CS) and ultra-high performance liquid chromatography with tandem mass spectrometry (UHPLC-MS/MS) for analysis. Upon identifying the optimal extraction conditions, various sorbents were assessed for their efficacy in the dispersive solid-phase extraction (d-SPE). Among these, the biosorbent CNT-CS emerged as the most efficient and cost-effective material, showing the best recovery results from spiked blank samples. The validation demonstrated that the method was adequate for analyzing 111 pesticides in eggplant samples with practical method quantification limits from 5 to 25 µg kg<sup>-1</sup>. When applied to commercial eggplant samples, 27 pesticides were detected, demonstrating the importance of the proposed method. It is noteworthy that the conducted work represents the first report on the use of the biosorbent CNT-CS in the clean-up step of the QuEChERS method. The results obtained in the validation and application steps demonstrate that the proposed method is an excellent alternative for monitoring programs.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jin Zhang, Ning Su, Wei Liu, Mengran Li, Haoyang Zheng, Bing Li, Xue Jin, Mingxia Gao, Xiangmin Zhang
{"title":"An effective cell-penetrating peptide-based loading method to extracellular vesicles and enhancement in cellular delivery of drugs.","authors":"Jin Zhang, Ning Su, Wei Liu, Mengran Li, Haoyang Zheng, Bing Li, Xue Jin, Mingxia Gao, Xiangmin Zhang","doi":"10.1007/s00216-025-05742-1","DOIUrl":"https://doi.org/10.1007/s00216-025-05742-1","url":null,"abstract":"<p><p>Extracellular vesicles (EVs) have been demonstrated to own the advantages in evading phagocytosis, crossing biological barriers, and possessing excellent biocompatibility and intrinsic stability. Based on these characteristics, EVs have been used as effective therapeutic carriers for drug delivery, but the low drug loading capacity greatly limits further applications. Herein, we developed a drug loading method based on cell-penetrating peptide (CPP) to enhance the encapsulation of therapeutic reagents in EVs, and EVs-based drug delivery system achieved higher killing efficacy to tumor cells. Urinary EVs and chemotherapy reagent doxorubicin (DOX) were used as model. It is easy to conjugate CPP with DOX (CPP-DOX) through the linker N-succinimidyl 3-maleimidopropionate (SMP). CPP-DOX was incubated with EVs under a mild condition, promoting the encapsulation of DOX into EV cavities. CPP-DOX-EVs showed strong anticancer ability since EVs delivery facilitated the uptake by cancer cells. EVs loading of CPP-DOX exhibited higher drug loading efficiency at 37.18%, presenting about 2.5 times increase in efficiency over EVs loading of DOX through passive incubation. Easy operation and controllable condition further reinforce the advantages compared with other loading methods. CPP-based drug loading method provides an effective strategy for EVs-based drug delivery system.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998151","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Evelyn J Abraham, Sarah J Chamberlain, Wilmer H Perera, R Teal Jordan, Joshua J Kellogg
{"title":"Application of predictive modeling tools for the identification of Ocimum spp. herbal products.","authors":"Evelyn J Abraham, Sarah J Chamberlain, Wilmer H Perera, R Teal Jordan, Joshua J Kellogg","doi":"10.1007/s00216-025-05735-0","DOIUrl":"https://doi.org/10.1007/s00216-025-05735-0","url":null,"abstract":"<p><p>Species identification of botanical products is a crucial aspect of research and regulatory compliance; however, botanical classification can be difficult, especially for morphologically similar species with overlapping genetic and metabolomic markers, like those in the genus Ocimum. Untargeted LC-MS metabolomics coupled with multivariate predictive modeling provides a potential avenue for improving herbal identity investigations, but the current dearth of reference materials for many botanicals limits the applicability of these approaches. This study investigated the potential of using greenhouse-grown authentic Ocimum to build predictive models for classifying commercially available Ocimum products. We found that three species, O. tenuiflorum, O. gratissimum, and O. basilicum, were chemically distinct based on their untargeted UPLC-MS/MS profiles when grown in controlled settings; combined with an orthogonal high-performance thin-layer chromatography (HPTLC) approach, O. tenuiflorum materials revealed two distinct chemotypes which could confound analysis. Three predictive models (partial least squares, LASSO regression, and random forest) were employed to extrapolate these findings to commercially available products; however, the controlled materials were significantly different from external samples, and all three chemometric models were unreliable in classifying external materials. LASSO was the most successful when classifying new greenhouse samples. Overall, this study highlights how growing and processing conditions can influence the complexity of botanical metabolome profiles; further studies are needed to characterize the factors driving herbal products' phytochemistry in conjunction with chemometric predictive modeling.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Aptamer-based fluorescence biosensor for rapid detection of chloramphenicol based on pyrene excimer switch.","authors":"Jizhao Zhang, Qiang Zhao","doi":"10.1007/s00216-025-05733-2","DOIUrl":"https://doi.org/10.1007/s00216-025-05733-2","url":null,"abstract":"<p><p>Chloramphenicol (CAP) is widely used in treating bacteria infection in animals and humans. However, the accumulation of CAP in food and environment caused serious health risk to human. Consequently, sensitive and selective detection of CAP is of great importance in environmental monitoring and food safety. Among various analytical methods, aptamer-based biosensors exhibit great potentials for CAP detection. Here, we developed an aptamer-based biosensor for rapid fluorescence detection of CAP based on pyrene excimer switch by using a newly selected short DNA aptamer with high affinity. The aptamer was labeled with pyrene molecules at both ends. The binding of CAP to the aptamer probe caused two pyrene molecules close to each other and the formation of a pyrene excimer, which induced the increase of the fluorescence signal from the pyrene excimer. CAP detection was achieved by measuring the fluorescence signal changes of the aptamer probes with dual pyrene labels. Under optimized conditions, the developed aptamer biosensor showed a detection limit of 24.4 nmol/L for CAP. The aptamer-based fluorescence sensor could quantify CAP in diluted tap water and lake water, exhibiting potentials for the application in real sample sensing of CAP.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tassiani Sarretto, Mika T Westerhausen, Jayden C Mckinnon, David P Bishop, Shane R Ellis
{"title":"Evaluation of combined workflows for multimodal mass spectrometry imaging of elements and lipids from the same tissue section.","authors":"Tassiani Sarretto, Mika T Westerhausen, Jayden C Mckinnon, David P Bishop, Shane R Ellis","doi":"10.1007/s00216-024-05696-w","DOIUrl":"https://doi.org/10.1007/s00216-024-05696-w","url":null,"abstract":"<p><p>The wide range of mass spectrometry imaging (MSI) technologies enables the spatial distributions of many analyte classes to be investigated. However, as each approach is best suited to certain analytes, combinations of different MSI techniques are increasingly being explored to obtain more chemical information from a sample. In many cases, performing a sequential analysis of the same tissue section is ideal to enable a direct correlation of multimodal data. In this work, we explored different workflows that allow sequential lipid and elemental imaging on the same tissue section using atmospheric pressure laser desorption/ionisation-plasma post-ionisation-MSI (AP-MALDI-PPI-MSI) and laser ablation-inductively coupled plasma-MSI (LA-ICP-MSI), respectively. It is found that performing lipid imaging first using matrix-coated samples, followed by elemental imaging on matrix-coated samples, provides high-quality MSI datasets for both lipids and elements, with the resulting distributions being similar to those obtained when each is performed in isolation. The effect of matrix removal prior to elemental imaging, and of performing elemental imaging first were also investigated but found to generally yield lower quality elemental imaging data but comparable lipid imaging data. Finally, we used the ability to acquire both elemental and lipid imaging data from the same section to investigate the spatial correlations between different lipids (including ceramides, phosphatidylethanolamine, and hexosylceramides) and elements within mouse brain tissue.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christopher Gawlig, Rebecca Hirschberger, Güngör Hanci, Saskia Schott, Shima Marandi, Ida Ronja Hesse, Michael Rühl
{"title":"Full sequencing of 100mer sgRNA via tandem mass spectrometry by targeted RNase H digestion with customized probes.","authors":"Christopher Gawlig, Rebecca Hirschberger, Güngör Hanci, Saskia Schott, Shima Marandi, Ida Ronja Hesse, Michael Rühl","doi":"10.1007/s00216-025-05737-y","DOIUrl":"https://doi.org/10.1007/s00216-025-05737-y","url":null,"abstract":"<p><p>The use of single-guide RNA (sgRNA) for gene editing using the CRISPR Cas9 system has become a powerful technique in various fields, especially with the growing interest in such molecules as therapeutic options in the last years. An important parameter for the use of these molecules is the verification of the correct sgRNA oligonucleotide sequence. Apart from next-generation sequencing protocols, mass spectrometry (MS) has been proven as a powerful technique for this purpose. The protocol and investigations presented in this work show an optimal digestion and 100% sequence coverage of sgRNA, while top-down approaches or other ribonuclease (RNase) digestion strategies obtain a sequence coverage of up to 80-90% utilizing multiple RNases. The results in this publication were obtained by utilizing DNA-RNA hybrid GAPmer-like probes and RNase H, an enzyme which specifically hydrolyzes RNA in DNA-RNA double strands. We assessed the optimal length of the DNA segment of these hybrid probes to maximize the specificity of the RNase H digestion and to achieve complete sequence confirmation by tandem MS analysis of the resulting digestion products. Furthermore, we showed that the approach is applicable for the identification of common synthesis-related impurities, like truncations and elongations. Despite the fact that the accessibility of this approach for highly modified molecules is limited to nucleotides which are not 2'-O-methylated, the optimized sequence coverage makes it a viable method.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Debra Ellisor, Mary Gregg, Angela Folz, Antonio Possolo
{"title":"Robust discrimination between closely related species of salmon based on DNA fragments.","authors":"Debra Ellisor, Mary Gregg, Angela Folz, Antonio Possolo","doi":"10.1007/s00216-024-05724-9","DOIUrl":"https://doi.org/10.1007/s00216-024-05724-9","url":null,"abstract":"<p><p>Closely related species of Salmonidae, including Pacific and Atlantic salmon, can be distinguished from one another based on nucleotide sequences from the cytochrome c oxidase sub-unit 1 mitochondrial gene (COI), using ensembles of fragments aligned to genetic barcodes that serve as digital proxies for the relevant species. This is accomplished by exploiting both the nucleotide sequences and their quality scores recorded in a FASTQ file obtained via Next Generation (NextGen) Sequencing of mitochondrial DNA extracted from Coho salmon caught with hook and line in the Gulf of Alaska. The alignment is done using MUSCLE (Muscle 5.2) (Edgar in Nat Commun 13:6968, 2022), applied to multiple versions of each fragment perturbed according to the nucleobase identification error probabilities underlying the quality scores. The Damerau-Levenshtein distance was used to determine the genetic barcode of the candidate species that is closest to each aligned, perturbed fragment. The \"votes\" that the sampled fragments cast for the different candidate species are then pooled and converted into identification probabilities, using weights determined by the entropy of the fragment-specific identification probability distributions. This novel approach to quantify the uncertainty associated with measurements made using NextGen Sequencing can be applied to discriminate closely related species, hence to value-assignment for reference materials supporting determinations of the authenticity of seafood, for example, NIST Reference Materials 8256 and 8257 (Coho salmon) (Ellisor et al., 2021).</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiaqi Xu, Qianyu Li, Wenrui Li, Di Wu, Yongning Wu, Guoliang Li
{"title":"Efficient adsorption and detection of steroid hormones in foods through the combination of novel magnetic TAPB-COF materials with click isotope probes.","authors":"Jiaqi Xu, Qianyu Li, Wenrui Li, Di Wu, Yongning Wu, Guoliang Li","doi":"10.1007/s00216-024-05727-6","DOIUrl":"https://doi.org/10.1007/s00216-024-05727-6","url":null,"abstract":"<p><p>Matrix effects pose a significant challenge in food analysis for the quantitative analysis of complex food samples. Herein, a novel magnetic covalent organic framework nanocomposite and the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction-based stable isotope labeling (SIL) method were presented for highly selective and sensitive detection of steroid hormones in food samples using HPLC-MS/MS. The nanocomposite, Fe<sub>3</sub>O<sub>4</sub>@TAPB-COF, with a core-shell structure exhibited high adsorption capacities for steroid hormones. Combined with a SIL method based on the CuAAC click reaction, steroid hormones were accurately quantified in food samples with high sensitivity and selectivity. A pair of SIL agents, N-(2-azidoethyl)aniline (d<sub>0</sub>-NAEA) and d<sub>5</sub>-N-(2-azidoethyl)aniline (d<sub>5</sub>-NAEA), was synthesized to label steroid hormones in the samples and standard solutions, respectively. The labeling reaction is highly specific, and the formation of the derivatives is easily ionized by MS, thus overcoming matrix effects. More surprisingly, the ionization efficiency of steroid hormones increased by a factor of 4 to 56, with matrix effects ranging from 87.3 to 99.3%. Under optimal conditions, this method exhibited a low limit of detection (LOD) ranging from 0.1 to 2.6 μg L<sup>-1</sup> and overcame the interference of matrix effects for trace-level steroid hormone analysis in foodstuffs.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A \"hand-held\" polarimeter for on-site chiral drug measurement and chemical reaction monitoring.","authors":"Rui Huang, Zhexuan Lin, Yanting Liu, Xuewan Wu, Kaisong Yuan","doi":"10.1007/s00216-024-05729-4","DOIUrl":"https://doi.org/10.1007/s00216-024-05729-4","url":null,"abstract":"<p><p>A polarimeter is a common but critical instrument for measuring the optical rotation of chiral compounds, ranging from the pharmaceutical to chemical industry, or even employed in monitoring chemical reactions for research purposes. Developing a portable polarimeter helps to transfer the measurements from the laboratory to on-site detection. Herein, we design a new portable polarimeter with a \"hand-held\" scale. Technically, we innovatively adopted a rotary potentiometer coupled with a high-precision voltmeter to signify the angle changes after polarized light travels through the chiral compound solution. Compared with the commercial disc polarimeter that uses a dial to measure the optical rotation, such a design shows superiority in being easy to read. This \"hand-held\" polarimeter meets the high demand for on-site detection on the premise of low cost. Bland-Altman analysis results showed consistency between our device's optical rotation detection method and the commercial disc polarimeter. The \"hand-held\" polarimeter can measure the optical rotation of a chiral drug and be applicable to monitor the progress of a chemical reaction. As such, this \"hand-held\" polarimeter shows great potential to assist scientists in scientific research, or for on-site measurement with high portability.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tools and databases for studying data in the glycosciences.","authors":"Kiyoko F Aoki-Kinoshita, Joseph Zaia","doi":"10.1007/s00216-025-05730-5","DOIUrl":"https://doi.org/10.1007/s00216-025-05730-5","url":null,"abstract":"","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}