Analytical and Bioanalytical Chemistry最新文献

筛选
英文 中文
Self-protective DNAzyme-based dual-responsive three-way Y-probe for simultaneous determination of multiple pathogenic bacteria.
IF 3.8 2区 化学
Analytical and Bioanalytical Chemistry Pub Date : 2025-04-01 Epub Date: 2025-02-17 DOI: 10.1007/s00216-025-05782-7
Bowen Li, Xinru Ren, Yijing Xiao, Weiqing Sun, Meili Yang, Tsing-Ao Pang, Rui Zhu, Zhiqiang Guo, Yu Wang, Su Liu, Jiadong Huang
{"title":"Self-protective DNAzyme-based dual-responsive three-way Y-probe for simultaneous determination of multiple pathogenic bacteria.","authors":"Bowen Li, Xinru Ren, Yijing Xiao, Weiqing Sun, Meili Yang, Tsing-Ao Pang, Rui Zhu, Zhiqiang Guo, Yu Wang, Su Liu, Jiadong Huang","doi":"10.1007/s00216-025-05782-7","DOIUrl":"10.1007/s00216-025-05782-7","url":null,"abstract":"<p><p>Foodborne pathogens, a major cause of foodborne illness due to their high virulence, pose a serious threat to public health. Consequently, identification of foodborne pathogens is essential for the prevention and treatment of foodborne infections. Consequently, there is an immediate need to establish a highly specific and precise approach for the concurrent detection of several foodborne pathogens. Herein, we developed a DNAzyme-based self-protecting dual-response nanoprobe for the simultaneous detection of two foodborne pathogens. The technique utilizes nanostructures to achieve logical signal input and output. In the presence of the target pathogen, the pathogen binds to the arch probe and releases the activation chain, which in turn activates a strand-displacement reaction and DNAzyme for signal amplification, producing different output signals to complete the simultaneous detection of multiple pathogens. The limits of detection for E. coli O157:H7 and S. typhimurium were determined to be 3.7 cfu/mL and 3.2 cfu/mL, with a measurement response time of 2 h. This approach enables ultrasensitive, specific, and simultaneous detection of two foodborne pathogens and is applicable for identifying foodborne pathogens in actual biological samples. The fluorescence detection of foodborne pathogens with a three-way Y-probe and DNAzyme coupling represents a novel approach for the concurrent identification of several foodborne diseases.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"1779-1790"},"PeriodicalIF":3.8,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143439726","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in the development of N-glycopeptide enrichment materials based on hydrophilic interaction chromatography. 基于亲水性相互作用色谱的n -糖肽富集材料的研究进展。
IF 3.8 2区 化学
Analytical and Bioanalytical Chemistry Pub Date : 2025-04-01 Epub Date: 2024-12-23 DOI: 10.1007/s00216-024-05708-9
Li Cheng, Mingxian Huang, Hui Ren, Yiqiang Wang, Hongmei Cui, Mingming Xu
{"title":"Advances in the development of N-glycopeptide enrichment materials based on hydrophilic interaction chromatography.","authors":"Li Cheng, Mingxian Huang, Hui Ren, Yiqiang Wang, Hongmei Cui, Mingming Xu","doi":"10.1007/s00216-024-05708-9","DOIUrl":"10.1007/s00216-024-05708-9","url":null,"abstract":"<p><p>Protein glycosylation is one of the most important post-translational modifications, implicated in the development of various diseases, including neurodegenerative diseases, diabetes, and cancers. However, the low content of glycoproteins in biological samples, the diversity and heterogeneity of glycan structures, and insensitive detection methods make glycosylation analysis challenging. As a result, efficient enrichment of glycopeptides from complex samples is a critical step. Efficient enrichment technology can increase the abundance of intact N-glycopeptides in complex biological samples, thereby improving the sensitivity and coverage of glycosylation analysis, which is of great significance for the accurate identification of biomarkers and the development of glycopeptide-based drugs. Among various separation methods for N-glycopeptides, hydrophilic interaction chromatography has received increasing attention, and a variety of enrichment materials have been developed. This article classifies and describes the relevant hydrophilic interaction chromatography materials and provides a comprehensive review of their applications in N-glycopeptide enrichment regarding selectivity, sensitivity, and enrichment performance. Future development trends of ideal glycopeptide enrichment materials are also discussed.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"1731-1749"},"PeriodicalIF":3.8,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A review of a colorimetric biosensor based on Fe3O4 nanozymes for food safety detection. 基于Fe3O4纳米酶的食品安全比色生物传感器研究进展。
IF 3.8 2区 化学
Analytical and Bioanalytical Chemistry Pub Date : 2025-04-01 Epub Date: 2024-12-13 DOI: 10.1007/s00216-024-05679-x
Ningning Guo, Jia Yang, Yixuan Li, Weiing Wang, Xiwen Liang, Qi Xu, Linna Du, Jing Qin
{"title":"A review of a colorimetric biosensor based on Fe<sub>3</sub>O<sub>4</sub> nanozymes for food safety detection.","authors":"Ningning Guo, Jia Yang, Yixuan Li, Weiing Wang, Xiwen Liang, Qi Xu, Linna Du, Jing Qin","doi":"10.1007/s00216-024-05679-x","DOIUrl":"10.1007/s00216-024-05679-x","url":null,"abstract":"<p><p>The issue of food safety poses a significant threat to human health. The colorimetric sensing method offers a highly sensitive response, visualization, and easy operation, making it highly promising for applications in the field of bioanalysis. Fe<sub>3</sub>O<sub>4</sub> nanomaterials not only possess the advantages of a straightforward preparation method, customizable functionalities, and facile surface modification, but also exhibit excellent peroxidase activity. The colorimetric biosensor based on a Fe<sub>3</sub>O<sub>4</sub> nanozyme is highly sensitive and has a low detection limit, making it widely recognized in the field of food safety detection. The review provides a summary of synthesis methods for Fe<sub>3</sub>O<sub>4</sub> nanozymes and discusses the effects of different synthesis methods on their structures. Additionally, the catalytic mechanism of the Fe<sub>3</sub>O<sub>4</sub> nanozyme and the influence of particle size, structure, pH, metal doping, and surface modifications on the peroxide activity are analyzed. Finally, we introduce the application of colorimetric sensors based on Fe<sub>3</sub>O<sub>4</sub> nanozymes in detecting antioxidants, heavy metal ions, pesticides, antibiotics, foodborne pathogen toxins, and other food additives and contaminants. This review is expected to provide reference and inspiration for future research on food safety detection through colorimetric sensors based on Fe<sub>3</sub>O<sub>4</sub> nanozymes.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"1713-1730"},"PeriodicalIF":3.8,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in carcinoembryonic antigen detection: a review of clinical applications and standardization.
IF 3.8 2区 化学
Analytical and Bioanalytical Chemistry Pub Date : 2025-04-01 Epub Date: 2025-03-11 DOI: 10.1007/s00216-025-05772-9
Haofeng Sun, Jianyi Liu, Qi Zhang, Lei Yang, Min Zhou, Dewei Song
{"title":"Advances in carcinoembryonic antigen detection: a review of clinical applications and standardization.","authors":"Haofeng Sun, Jianyi Liu, Qi Zhang, Lei Yang, Min Zhou, Dewei Song","doi":"10.1007/s00216-025-05772-9","DOIUrl":"10.1007/s00216-025-05772-9","url":null,"abstract":"<p><p>Carcinoembryonic antigen (CEA) is among the earliest identified tumor markers and remains extensively utilized in the diagnosis and management of colorectal cancer. The detection of CEA presents considerable challenges in the field of analytical chemistry, given its complexity. The most prevalent detection approach is the immunoassay, including the chemiluminescence immunoassay commonly employed in clinical settings; however, discrepancies between various methods persist. Mass spectrometry-based techniques offer enhanced accuracy as they circumvent matrix interference. Nonetheless, the intricate nature of proteins continues to pose significant challenges. This paper reviews recent advancements in CEA detection technologies, examines their clinical application potential from two key platforms, and addresses the standardization process of CEA detection. This paper highlights the importance of developing rapid and precise methods for CEA analysis in complex matrices and their standardization.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"1751-1764"},"PeriodicalIF":3.8,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143603204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phosphonylated tyrosine and cysteine disulfide adducts both generated from immunoglobulin G and human serum albumin indicate exposure to the nerve agent VX in vitro.
IF 3.8 2区 化学
Analytical and Bioanalytical Chemistry Pub Date : 2025-04-01 Epub Date: 2025-02-01 DOI: 10.1007/s00216-025-05762-x
Henrik Reuter, Dirk Steinritz, Franz Worek, Harald John
{"title":"Phosphonylated tyrosine and cysteine disulfide adducts both generated from immunoglobulin G and human serum albumin indicate exposure to the nerve agent VX in vitro.","authors":"Henrik Reuter, Dirk Steinritz, Franz Worek, Harald John","doi":"10.1007/s00216-025-05762-x","DOIUrl":"10.1007/s00216-025-05762-x","url":null,"abstract":"<p><p>Pronase-catalyzed proteolysis is shown to produce single amino acid adducts of tyrosine (Tyr) and cysteine (Cys) obtained from both human serum albumin (HSA) and immunoglobulin G (IgG) after in vitro exposure of plasma to the nerve agent VX. Total plasma as well as isolated HSA and IgG yielded the Tyr residue phosphonylated with the ethyl methylphosphonic acid moiety, Tyr(-EMP). Furthermore, a Cys residue adducted with the diisopropylaminoethane thiol leaving group of the agent bound via a disulfide bridge, Cys(-DPAET), was also obtained from both proteins. Even though Tyr(-EMP) represents an internationally well-accepted biomarker of a VX-like agent its origin from plasma IgG has never been shown before. In addition, this is the first time that Cys(-DPAET) is presented as a biomarker of VX exposure clearly identifying the chemical nature of the V-type nerve agent's leaving group. Both biomarkers were detected after selective affinity-based solid-phase extraction (SPE) from plasma that yielded highly purified HSA and IgG as documented by sodium dodecyl polyamide gel electrophoresis (SDS-PAGE). Both biomarkers were found in the corresponding protein bands of HSA and IgG each after in-gel proteolysis with pronase. A micro liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry method (LC-ESI HR-MS/MS) was developed for the simultaneous detection of Tyr(-EMP) and Cys(-DPAET). The time for proteolysis was optimized for maximum biomarker yield. The method showed excellent selectivity and sensitivity, and the adducted proteins and biomarkers were found to be highly stable during storage. Accordingly, the presented method sheds more light on the molecular toxicology of VX and broadens the spectrum of methods suited for biomedical verification.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"1833-1845"},"PeriodicalIF":3.8,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913938/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143073375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering stimuli-responsive CRISPR-Cas systems for versatile biosensing. 为多功能生物传感设计刺激响应型 CRISPR-Cas 系统。
IF 3.8 2区 化学
Analytical and Bioanalytical Chemistry Pub Date : 2025-04-01 Epub Date: 2024-11-27 DOI: 10.1007/s00216-024-05678-y
Linxin Cao, Wenhui Chen, Wenyuan Kang, Chunyang Lei, Zhou Nie
{"title":"Engineering stimuli-responsive CRISPR-Cas systems for versatile biosensing.","authors":"Linxin Cao, Wenhui Chen, Wenyuan Kang, Chunyang Lei, Zhou Nie","doi":"10.1007/s00216-024-05678-y","DOIUrl":"10.1007/s00216-024-05678-y","url":null,"abstract":"<p><p>The precise target recognition and nuclease-mediated effective signal amplification capacities of CRISPR-Cas systems have attracted considerable research interest within the biosensing field. Guided by insights into their structural and biochemical mechanisms, researchers have endeavored to engineer the key biocomponents of CRISPR-Cas systems with stimulus-responsive functionalities. By the incorporation of protein/nucleic acid engineering techniques, a variety of conditional CRISPR-Cas systems whose activities depend on the presence of target triggers have been established for the efficient detection of diverse types of non-nucleic acid analytes. In this review, we summarized recent research progress in engineering Cas proteins, guide RNA, and substrate nucleic acids to possess target analyte-responsive abilities for diverse biosensing applications. Furthermore, we also discussed the challenges and future possibilities of the stimulus-responsive CRISPR-Cas systems in versatile biosensing.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"1699-1711"},"PeriodicalIF":3.8,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142724501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An ultra-fast method for therapeutic drug monitoring of tacrolimus, sirolimus and cyclosporine A.
IF 3.8 2区 化学
Analytical and Bioanalytical Chemistry Pub Date : 2025-04-01 Epub Date: 2025-02-14 DOI: 10.1007/s00216-025-05773-8
Zhi-Hua Lv, Xin Li, Rui Peng, Shao-Ting Wang
{"title":"An ultra-fast method for therapeutic drug monitoring of tacrolimus, sirolimus and cyclosporine A.","authors":"Zhi-Hua Lv, Xin Li, Rui Peng, Shao-Ting Wang","doi":"10.1007/s00216-025-05773-8","DOIUrl":"10.1007/s00216-025-05773-8","url":null,"abstract":"<p><p>Therapeutic drug monitoring for immunosuppressants is a widely conducted global practice. Traditionally, the pretreatment of whole blood involves the use of metal ions combined with organic solvents. However, this method requires multiple reagent additions, repeated opening, closing, and vortexing of vials, and it also leads to heavy metal pollution. Given the typically large sample volumes, optimizing this process is crucial for increasing throughput, reducing the workload of clinical staff, and lowering costs. We discovered that treating whole blood with a 60 to 75% acetonitrile (ACN) solution effectively releases tacrolimus, sirolimus, and cyclosporine A while simultaneously precipitating protein. This allowed us to significantly simplify the pretreatment process to just adding 65% ACN solution containing internal standards, manually shaking for 20 s, and centrifuging for 2 min. The resulted supernatant can then be directly analyzed by mass spectrometry. Method validation demonstrated that the new approach can accurately quantify tacrolimus in the range of 0.64 to 37.5 ng/ml, cyclosporine A at 12 to 976 ng/ml, and sirolimus at 0.99 to 43.4 ng/ml. A comparison of paired samples showed the new method to be perfectly consistent with the classical method, with 293 out of 300 results deviating by no more than ± 20%. This study has greatly simplified the workflow, increased throughput, and resolved environmental concerns for therapeutic drug monitoring of immunosuppressants, including tacrolimus, sirolimus, and cyclosporine A, in whole blood samples. The proposed method is a viable replacement for existing protocols and deserves to be adopted in all clinical laboratories with relevant practical needs globally.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"1915-1925"},"PeriodicalIF":3.8,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143424693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Requirements for fast multianalyte detection and characterisation via electrochemical-assisted SERS in a reusable and easily manufactured flow cell.
IF 3.8 2区 化学
Analytical and Bioanalytical Chemistry Pub Date : 2025-04-01 Epub Date: 2025-02-03 DOI: 10.1007/s00216-025-05763-w
Maximilian E Blaha, Anish Das, Detlev Belder
{"title":"Requirements for fast multianalyte detection and characterisation via electrochemical-assisted SERS in a reusable and easily manufactured flow cell.","authors":"Maximilian E Blaha, Anish Das, Detlev Belder","doi":"10.1007/s00216-025-05763-w","DOIUrl":"10.1007/s00216-025-05763-w","url":null,"abstract":"<p><p>Surface-enhanced Raman spectroscopy (SERS) is a highly sensitive analytical technique that captures vibrational spectra of analytes adsorbed to rough coin metal surfaces with remarkable signal intensities. However, its wider application is limited by challenges in substrate range, quantification, and the disposable nature of SERS substrates partly due to irreversible analyte adsorption-commonly referred to as the 'memory effect'. Overcoming these limitations and achieving real-time analysis in flow-through systems remains a key challenge for the advancement of SERS. This study presents a SERS flow cell incorporating an Ag-based SERS substrate and a Pt counter-electrode, enabling the investigation of how electrochemical methods can address existing challenges. Our approach demonstrates that signal intensities can be both enhanced and spectroelectrochemically modified. Additionally, the combination of constant solvent flow and electrochemical potentials enhances the longevity of the SERS substrate, facilitating multianalyte measurements while mitigating the memory effect. Key parameters have been systematically studied, including SERS substrate materials (silver and copper), solvents, buffers, supporting electrolytes, and electrochemical protocols. We achieved consistent and reproducible electrochemical tuning of SERS signals by using halogen-free electrolytes in polar solvents commonly used in techniques like HPLC. The versatility of the system was validated through the analysis of several model compounds and the sequential detection of multiple analytes. We also successfully applied the system to detect and characterise contaminants and pharmaceuticals, highlighting its potential for a wide range of analytical applications.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"1847-1861"},"PeriodicalIF":3.8,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914304/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid and accurate identification of foodborne bacteria: a combined approach using confocal Raman micro-spectroscopy and explainable machine learning.
IF 3.8 2区 化学
Analytical and Bioanalytical Chemistry Pub Date : 2025-03-29 DOI: 10.1007/s00216-025-05816-0
Qiancheng Tu, Miaoyun Li, Zhiyuan Sun, Huimin Niu, Lijun Zhao, Yanxiao Wang, Lingxia Sun, Yanxia Liu, Yaodi Zhu, Gaiming Zhao
{"title":"Rapid and accurate identification of foodborne bacteria: a combined approach using confocal Raman micro-spectroscopy and explainable machine learning.","authors":"Qiancheng Tu, Miaoyun Li, Zhiyuan Sun, Huimin Niu, Lijun Zhao, Yanxiao Wang, Lingxia Sun, Yanxia Liu, Yaodi Zhu, Gaiming Zhao","doi":"10.1007/s00216-025-05816-0","DOIUrl":"https://doi.org/10.1007/s00216-025-05816-0","url":null,"abstract":"<p><p>This study proposes a rapid identification method for foodborne pathogens by combining Raman spectroscopy with explainable machine learning. Spectral data of nine common foodborne pathogens are collected using a laser confocal Raman spectrometer, and their characteristic Raman peaks are identified and analyzed. Key spectral features are extracted using competitive adaptive reweighted sampling (CARS) and the successive projections algorithm (SPA), while t-distributed stochastic neighbor embedding (t-SNE) is employed for visualization. Subsequently, classification models, including support vector machine (SVM) and random forest (RF), are developed, and the optimal model is selected based on classification accuracy (ACC), with the RF model achieving a test accuracy of 98.91%. To enhance the interpretability of the model, Shapley Additive exPlanations (SHAP) analysis is applied to evaluate the contribution of each spectral feature to the classification results, identifying critical Raman shifts significantly influencing pathogen classification. The results demonstrate that CARS-SPA feature selection not only improves the accuracy and efficiency of the classification model but also enhances its transparency and reliability. This study optimizes the workflow for food safety testing, reduces the risk of foodborne diseases, and provides robust technical support for public health and safety.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143741942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct transfer of multicellular tumor spheroids grown in agarose microarrays for high-throughput mass spectrometry imaging analysis.
IF 3.8 2区 化学
Analytical and Bioanalytical Chemistry Pub Date : 2025-03-29 DOI: 10.1007/s00216-025-05843-x
Yuan Liu, Jillian Johnson, Hua Zhang, Penghsuan Huang, Lingjun Li
{"title":"Direct transfer of multicellular tumor spheroids grown in agarose microarrays for high-throughput mass spectrometry imaging analysis.","authors":"Yuan Liu, Jillian Johnson, Hua Zhang, Penghsuan Huang, Lingjun Li","doi":"10.1007/s00216-025-05843-x","DOIUrl":"https://doi.org/10.1007/s00216-025-05843-x","url":null,"abstract":"<p><p>Multicellular tumor spheroids (MCTSs) play an important role in biological studies and cancer research. There is an emerging research interest in molecular profiling and drug distribution of MCTSs by leveraging the superior sensitivity and molecular specificity of mass spectrometry imaging (MSI). Current methods for sample preparation of MCTSs can suffer from low throughput, as MCTSs are typically individually transferred from cell culture into an MSI embedding media and sectioned individually, or sometimes, a few spheroids are placed in a small block of embedding media in preparation for MSI. Here, we developed a method to minimize the sample preparation steps needed to create high-throughput MCTS frozen sections for MSI. Agarose-based microarrays created from Microtissues<sup>®</sup> molds were used during MCTS culturing, after which the entire MCTS agarose microarray was taken out of the cell culture well and then directly embedded in 5% gelatin, without the need for a transfer step for each individual MCTS into the embedding media. This method enables rapid profiling of up to 81 MCTSs for larger MCTSs (500-800 µm) or up to 256 MCTSs for smaller MCTSs (200-300 µm) in a single section, remarkably improving the throughput possible for MSI MCTS workflows. Notably, sectioning MCTSs together in the agarose microarray also improves MCTS visualization during sectioning, such that staining each MCTS section to ensure the presence of the MCTSs within the embedding media is not necessary during the sectioning process. The method described here provides a more direct, convenient strategy to achieve high-throughput sections. MSI MCTS sectioning throughput is an important advancement for both pharmaceutical testing of MCTS; the direct transfer 3D cell cultures grown within cell culture-compatible polymer scaffolding are also critical for expanding MSI for the characterization of microfluidic and complex in vitro models, where agarose is readily utilized as a non-adhesive 3D cell culture scaffold.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143741940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信