{"title":"Development and application of a LC-HRMS method for simultaneous determination of ten illicit antifungal drugs in herbal bacteriostatic products.","authors":"Yuxiang Li, Yanping Li, Guobin Lin, Yongyou Hua, Wenting Zhang, Honglin Lin","doi":"10.1007/s00216-024-05670-6","DOIUrl":"https://doi.org/10.1007/s00216-024-05670-6","url":null,"abstract":"<p><p>The widespread use of sub-therapeutic antibiotics may lead to treatment failures, increased resistance to antibiotics, and even the encouragement of the formation of superbugs. Fraudulent herbal medicines that actually contain unlabeled active ingredients are a global problem. Therefore, streamlined and accurate analytical techniques that can identify and quantify a variety of antimicrobials in suspected illegal products are required. In the present work, we developed a sensitive, robust, and accurate method that involves multi-step extraction, EMR-lipid-based pass-through cleanup, and UHPLC-Q/HRMS with an orbital ion trap instrument analysis for the simultaneous detection of ten illicit antifungal drugs (flucytosine, fluconazole, ketoconazole, naftifine hydrochloride, griseofulvin, bifonazole, econazole nitrate, elubiol, clotrimazole, and miconazole nitrate) in herbal disinfection products. This validated method was then applied to 210 authentic samples, resulting in 25% of the samples being positive for the drugs. The results suggested the need to strengthen controls in this field to detect illicit antifungal drugs in herbal bacteriostatic products, which represents a potential health risk for the consumer. On a global scale, more and more frequent routine monitoring is being carried out in this area. This study provides valuable insights into large-scale complex sample chemical profiling, and the method developed appears to be promising and applicable for high-throughput routine multiple antibiotic analysis in a complex sample matrix.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142790928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cristina Sempio, Jorge Campos-Palomino, Jelena Klawitter, Wanzhu Zhao, Marilyn A Huestis, Uwe Christians, Jost Klawitter
{"title":"Quantification of 11 kratom alkaloids including mitragynine and its main metabolites in human plasma using LC-MS/MS.","authors":"Cristina Sempio, Jorge Campos-Palomino, Jelena Klawitter, Wanzhu Zhao, Marilyn A Huestis, Uwe Christians, Jost Klawitter","doi":"10.1007/s00216-024-05689-9","DOIUrl":"https://doi.org/10.1007/s00216-024-05689-9","url":null,"abstract":"<p><p>Recently in the USA, kratom consumers increasingly report use of the plant for self-treatment of mood ailments, the lack of energy, chronic pain, and opioid withdrawal and dependence. Several alkaloids are present in kratom leaves, but limited data are available on their pharmacokinetics/pharmacodynamics, except for mitragynine. To support clinical studies, a high-performance liquid chromatography-tandem mass spectrometry assay for the simultaneous quantification of 11 kratom alkaloids in human plasma was developed and validated. For calibration standards and quality control samples, human plasma was fortified with alkaloids at varying concentrations, and 200 µL were extracted employing a simple one-step protein precipitation procedure. The extracts were analyzed using LC-MS/MS including electrospray ionization (ESI) in positive multiple reaction monitoring (MRM) mode. The lower limit of quantification was 0.5 ng/mL, and the upper limit of quantification was 400 ng/mL for all analytes. Inter-day analytical accuracy and imprecision ranged from 98.4 to 113% of nominal and from 3.9 to 14.7% (coefficient of variance), respectively. The analysis of plasma samples collected during a clinical trial administering capsules containing kratom leaf extract showed that most samples had quantifiable concentrations of mitragynine, 7-OH-mitragynine, speciogynine, speciociliatine, and paynantheine and that mitragynine, speciogynine, and speciociliatine accumulated in human plasma after daily administration over 15 days. An LC-MS/MS assay for the specific quantification of kratom alkaloids including mitragynine and its main metabolites was developed and successfully validated in human plasma. Human plasma samples collected following multiple oral administrations of a controlled Kratom extract documented accumulation of kratom alkaloids over 15 days.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142790652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Green analytical chemistry: integrating sustainability into undergraduate education.","authors":"Saša M Miladinović","doi":"10.1007/s00216-024-05680-4","DOIUrl":"https://doi.org/10.1007/s00216-024-05680-4","url":null,"abstract":"","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142783617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fernando Gustavo Marques Violante, Evelyn de Freitas Guimarães, Nathália Oliveira Cavalcanti Zúniga, Francisco Radler de Aquino Neto
{"title":"Implementation of the ISO 33405 requirements and production of a certified reference material for nitrofuran metabolites as incurred chicken muscle.","authors":"Fernando Gustavo Marques Violante, Evelyn de Freitas Guimarães, Nathália Oliveira Cavalcanti Zúniga, Francisco Radler de Aquino Neto","doi":"10.1007/s00216-024-05681-3","DOIUrl":"https://doi.org/10.1007/s00216-024-05681-3","url":null,"abstract":"<p><p>Certified reference materials (CRMs) contribute to the traceability of measurement results to recognized anchor points, ideally to the International System of Units (SI), and consequently, to their comparability and reliability. In the area of veterinary drugs' residues in foods of animal origin, the important role of CRMs must be highlighted, given the problems caused by trade restrictions in some countries. The results of studies concerning the certification of an incurred matrix certified reference material (IMCRM) for the mass fraction of nitrofuran metabolites in chicken muscles are presented in this work. A batch of IMCRM candidates was produced from chicken muscle samples containing the metabolites 3-amino-2-oxazolidinone (AOZ), 3-amino-5-morpholinomethyl-2-oxazolidinone (AMOZ), semicarbazide (SEM), and 1-aminohydantoin (AHD). All the statistical approaches for the homogeneity and stability assessments were based on the principles contained within ISO Guide 35 (current ISO 33405:2024). All the quantitative analyses of the nitrofuran metabolites were performed by means of high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The properties studied were sufficiently homogeneous and stable at -20 °C for 360 days (the defined storage conditions). Under transport conditions, the AOZ metabolite showed instability at 50 °C. The residual moisture content was also monitored and showed instability at 20 °C and 50 °C. The characterization was performed via an exact matching calibration approach and the assigned values with their respective expanded uncertainties (k = 2) were 5.40 ± 1.2 ng g<sup>-1</sup>, 5.49 ± 0.85 ng g<sup>-1</sup>, 5.08 ± 1.2 ng g<sup>-1</sup>, and 6.01 ± 0.85 ng g<sup>-1</sup> for the metabolites AOZ, AMOZ, AHD, and SEM, respectively, in the lyophilized chicken muscle. These values ranged from 1.3 to 1.5 ng g<sup>-1</sup> on a wet basis. The expiration date for the CRM was estimated based on the stated limits for future values calculated from the confidence interval of the stability study's linear regression curve.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142783536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Silvio Vaz Jr.: Applications of analytical chemistry in industry.","authors":"Ulrich Panne","doi":"10.1007/s00216-024-05666-2","DOIUrl":"https://doi.org/10.1007/s00216-024-05666-2","url":null,"abstract":"","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142783562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performance enhancement of mid-infrared NH<sub>3</sub> sensor using 9.06 μm QCL based on spectral optimization and NGO-LSTM model.","authors":"Guolin Li, Lupeng Jia, Enting Dong, Siyu Zhang, Fuli Zhao","doi":"10.1007/s00216-024-05677-z","DOIUrl":"https://doi.org/10.1007/s00216-024-05677-z","url":null,"abstract":"<p><p>A detection sensor for mid-infrared ammonia (NH<sub>3</sub>) has been developed according to wavelength modulation spectroscopy-tunable diode laser absorption spectroscopy (WMS-TDLAS) technology, which can be applied in the chemical and aquaculture industries. A 9.06 µm quantum cascade laser (QCL) and a 41.5 m multipass gas cell (MPGC) were used to increase the detection limit of NH<sub>3</sub>. Spectral optimization and the NGO-LSTM (northern goshawk optimization-long short-term memory) model applied to gas detection are designed to improve the accuracy of sensor. Among them, the design of the temperature compensation and spectral drift correction reduces the effect of temperature and other environmental factors. The original second harmonic signal was denoised using the CEEMDAN-WPD (complete ensemble empirical mode decomposition with adaptive noise-wavelet packet decomposition) algorithm. And the NGO-LSTM algorithm was applied to NH<sub>3</sub> concentration inversion, adaptively optimizing the weight parameters. The experiment reflects that the measured value of the sensor has an excellent linear relationship with the set value (R<sup>2</sup> 0.9992). The long-term stability of the sensor was verified based on 400 ppb NH<sub>3</sub>, with an RMSE (root mean square error) of 4.754 ppb. Allan-Werle bias analysis shows that the detection limit (LoD) is approximately 792 ppt at an integration time of 232 s. Subsequent response time and atmospheric environment simulation experiments have proven that this sensor provides an efficient approach for real-time monitoring of NH<sub>3</sub>.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142765248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P Thiebot, R Magny, P Martins, P Houze, V Bloch, F Vorspan, N Auzeil, L Labat
{"title":"Quantitative analysis of cannabinoids and metabolites in oral fluid by volumetric absorptive microsampling combined with UHPLC-HRMS.","authors":"P Thiebot, R Magny, P Martins, P Houze, V Bloch, F Vorspan, N Auzeil, L Labat","doi":"10.1007/s00216-024-05651-9","DOIUrl":"https://doi.org/10.1007/s00216-024-05651-9","url":null,"abstract":"<p><p>With recent evolution of cannabis legalization around the world and multiplication of cannabis derived products, identifying and qualifying cannabis consumption has a proven interest. Although blood, plasma, and urine are common matrices widely used in toxicology laboratories, oral fluid presents specific advantages. In the context of doping tests, addiction consultation or roadside checks, where other matrices are impractical to collect or can be adulterated, oral fluid is a promising matrix that allows a non-invasive, rapid, and monitored self-sampling. However, available devices required a consequent volume of oral fluid, more than 250 µL, sometimes difficult to collect. We present here a fully optimized quantitative method for seven cannabinoids, including four metabolites, in oral fluid, Δ9-tetrahydrocannabinol, 11-hydroxy-Δ9-tetrahydrocannabinol and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol; cannabidiol, 7-hydroxy and 7-carboxycannabidiol; and cannabinol. After self-collection of 20 µL using an accurate and precise volumetric absorptive microsampling device (VAMS<sup>®</sup>), cannabinoids were derivatized with 2-fluoro-1-methylpyridinium p-toluenesulfonate to increase sensitivity. The successive steps of the proposed method, including biosampling, 1 h sample preparation with derivatization, and acquisition by ultrahigh-performance liquid chromatography coupled to high-resolution mass spectrometry, were fully optimized. A limit of quantification of 0.5 ng/mL (≈10 pg per sampling) was thus targeted, adapted to the legal threshold required by the authorities and to clinical monitoring. Applied to six cannabis consumers, the proposed method made it possible to quantify in 20 µL oral fluid samples, Δ9-tetrahydrocannabinol ranging from 0.5 to 6236 ng/mL, cannabidiol from 0.6 to 190 ng/mL and cannabinol from 0.5 to 118 ng/mL.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142765250","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sven Hermeling, Johannes Plagge, Sabrina Krautbauer, Josef Ecker, Ralph Burkhardt, Gerhard Liebisch
{"title":"Rapid quantification of murine bile acids using liquid chromatography-tandem mass spectrometry.","authors":"Sven Hermeling, Johannes Plagge, Sabrina Krautbauer, Josef Ecker, Ralph Burkhardt, Gerhard Liebisch","doi":"10.1007/s00216-024-05668-0","DOIUrl":"https://doi.org/10.1007/s00216-024-05668-0","url":null,"abstract":"<p><p>Interest in bile acids (BAs) is growing due to their emerging role as signaling molecules and their association with various diseases such as colon cancer and metabolic syndrome. Analyzing BAs requires chromatographic separation of isomers, often with long run times, which hinders BA analysis in large studies. Here, we present a high-throughput method based on liquid chromatography-tandem mass spectrometry to quantify BAs in mouse samples. After acidic protein precipitation in the presence of a comprehensive mixture of stable isotope-labeled internal standards (SIL-ISs), BAs are separated on a biphenyl column by gradient elution at basic pH. Quantification is performed using a six-point calibration curve. Except for the separation of β- and ω-muricholic acid (MCA) species, a rapid separation of 27 BA species was achieved in a run time of 6.5 min. Plasma quality controls (QCs) were used to evaluate intra- and inter-day precision. The CV was less than 10% for most BA species and exceeded 20% only for glycohyodeoxycholic (GHDCA) and taurohyodeoxycholic acid (THDCA) due to the lack of a corresponding SIL-IS. The limit of quantification (LoQ) was tested using diluted QCs and was found to be compromised for some BA species as a result of insufficient isotopic purity of the SIL-IS, leading to significant interference with the respective analyte. Finally, we tested the mouse sample material requirements for plasma, bile, and liver samples and determined BA concentrations in C57/BL6N wild-type mice. In conclusion, the LC-MS/MS method presented here permits a rapid and reproducible quantification of the major murine BAs.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142765252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sensitive determination of volatile nitrosamines with ambient pressure ammonium-adduct ionization mass spectrometry.","authors":"Lian Duan, Cheng Wang, Yuwei Li, Binwang Yang, Xiuqing Zheng, Jiaxu Liu, Guoxing Jing, Wenjie Liu, Jianna Yu","doi":"10.1007/s00216-024-05580-7","DOIUrl":"10.1007/s00216-024-05580-7","url":null,"abstract":"<p><p>In recent years, the control of volatile N-nitrosamines (NAs) has been of interest in the pharmaceutical and food industries, as many of these compounds are probable human carcinogens. Thus, rapid and trace-level quantitative determination methods are in urgent demand. In this work, ambient pressure ammonium-adduct ionization mass spectrometry was proposed for the sensitive detection of volatile nitrosamines in various pharmaceutical headspaces. The ammonium ions produced through electrospray ionization acted as reactant ions for NAs to generate ammonium-NA adduct ions and underwent in-source collision-induced dissociation to produce protonated NAs, which were detected by mass spectrometry. The ionization selectivity and sensitivity for various volatile NAs were improved significantly using the developed method, which was demonstrated by the limit of quantification (LOQ) below 52 ng L<sup>-1</sup> for all NAs, and the quantitative performance was consequently improved. Different NAs exhibited almost equimolar response using NH<sub>4</sub><sup>+</sup> as the reactant ion, with at least a twofold enhancement in intensity for the individual compounds relative to when using H<sup>+</sup> as the reactant ion. The proposed method is a rapid, sensitive, and environmentally economical approach that uses few reagents.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"6839-6847"},"PeriodicalIF":3.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qingshan Zhong, Lei Shao, Yudong Yao, Shuo Chen, Xiuyi Lv, Zhihan Liu, Shanshan Zhu, Zejun Yan
{"title":"Urine-based SERS and multivariate statistical analysis for identification of non-muscle-invasive bladder cancer and muscle-invasive bladder cancer.","authors":"Qingshan Zhong, Lei Shao, Yudong Yao, Shuo Chen, Xiuyi Lv, Zhihan Liu, Shanshan Zhu, Zejun Yan","doi":"10.1007/s00216-024-05595-0","DOIUrl":"10.1007/s00216-024-05595-0","url":null,"abstract":"<p><p>Bladder cancer (BC) is an epidemiological urologic malignancy that continues to increase each year. Early diagnosis and prognosis monitoring is always significant in clinical practice, especially in distinguishing non-muscle-invasive bladder cancer (NMIBC) from muscle-invasive bladder cancer (MIBC), due to the various depths of tumor invasion related to different therapeutic schedules and recurrence rates. Common diagnostic approaches are too invasive or generally inefficient in accuracy and specificity. In this work, a totally non-invasive and cost-effective method is established by investigating urine samples using surface-enhanced Raman spectroscopy (SERS) and multivariate statistical analysis. The comparison of urine SERS spectra shows the intensities of characteristic peaks for DNA/RNA, hypoxanthine, albumin, D-( +)-galactosamine, fatty acids, and some amino acids are distinguishable in BC occurrence and invasion progression. A PLS-LDA-based two-step binary classification scheme is performed on urine SERS spectra and the diagnostic accuracies were 97.7% and 96.3% for healthy individuals versus BC patients and NMIBC versus MIBC patients, respectively. Moreover, the impact of urine SERS spectral lengths in reaching high-precision recognition of BC is investigated. The results show that the Raman peaks at 803, 893, 1139, 1375, and 1466 cm<sup>-1</sup> play an essential role in correctly categorizing healthy control, NMIBC, and MIBC patients, and SERS spectra ranges from 400 to 1600 cm<sup>-1</sup> are enough for this identification task. These findings provide a sensitive, label-free, rapid, and totally non-invasive way for assessment of invasion depth of BC to its early diagnosis and prognosis monitoring, as well as valuable insights for selecting reasonable spectral range to enhance the measurement efficiency especially in large-scale sample datasets.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"6973-6984"},"PeriodicalIF":3.8,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}