Eleonora Bossi, Simone Serrao, Pierluigi Reveglia, Antonietta Ferrara, Marta Nobile, Elena Limo, Gaetano Corso, Giuseppe Paglia
{"title":"Pre-analytic assessment of dried blood and dried plasma spots: integration in mass spectrometry-based metabolomics and lipidomics workflow.","authors":"Eleonora Bossi, Simone Serrao, Pierluigi Reveglia, Antonietta Ferrara, Marta Nobile, Elena Limo, Gaetano Corso, Giuseppe Paglia","doi":"10.1007/s00216-025-05760-z","DOIUrl":"10.1007/s00216-025-05760-z","url":null,"abstract":"<p><p>Microsampling, especially dried blood spots (DBS), emerged in recent years as a viable alternative to conventional blood collection since it is rapid, simple, minimally invasive, and has user-friendly characteristics. Moreover, DBS are able to avoid analyte degradation thanks to their great stability. Due to their versatility, clinical applications with DBS have increased, including mass spectrometry-based metabolomics and lipidomics studies. In this work, we evaluated and optimized extraction protocols testing five different extraction solutions to perform metabolomics and lipidomics studies on the same spot considering three commercially available microsampling devices, Capitainer, Whatman, and Telimmune. Parallelly, we also evaluated the short-term stability of the three devices at room temperature for up to 5 days. Our results showed that pure methanol was the best compromise to simultaneously extract from the same spot both the lipidome and polar metabolome. However, we also propose a two-step protocol combining methanol and water extraction that improves polar metabolite extraction and shows improved reproducibility in Capitainer and Whatman. Short-term stability results highlighted that both polar metabolites and lipids were stable for up to 6 days using the Capitainer device, while with Whatman and Telimmune, some significant variations were observed after 3 days for some classes of metabolites/lipids, suggesting the need for cold-chain storage when working with these devices.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"1791-1805"},"PeriodicalIF":3.8,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913995/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143187882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alice Šimonová, Martin Balouch, František Štěpánek, Tomáš Křížek
{"title":"Investigating drug-liposome interactions using liposomal electrokinetic chromatography.","authors":"Alice Šimonová, Martin Balouch, František Štěpánek, Tomáš Křížek","doi":"10.1007/s00216-025-05783-6","DOIUrl":"10.1007/s00216-025-05783-6","url":null,"abstract":"<p><p>This study explores the potential of using liposomal electrokinetic chromatography as a ranking method for the rapid and simultaneous evaluation of drug-membrane interactions of a larger group of substances and assessing their sensitivity to tissue-specific parameters, namely pH, temperature, and lipid composition. We used a group of nine model drug substances to manifest how molecules could be classified for the relative sensitivity of drug-membrane interactions to pH and temperature. We observed that increasing the amount of liposomes in the background electrolyte significantly affected the separation kinetics of various active pharmaceutical ingredients, altering their mobility and/or peak shapes. Experiments with liposomes from bovine liver and heart tissue extracts revealed different interactions based on the lipid composition. Canagliflozin, which initially showed no electrophoretic mobility, migrated toward the anode in the presence of negatively charged liposomes. Mobility of positively charged substances, ambroxol and maraviroc, was suppressed by the interactions with liposomes. Their peaks also exhibited significant tailing. The effect on the separation of negatively charged compounds was significantly weaker. A small change in mobility was observed only in the case of deferasirox. We also examined the effect of temperature during separation, and we observed that increased temperature generally enhanced effective mobility due to lower electrolyte viscosity and increased lipid bilayer fluidity. Lastly, we tested the effect of sodium phosphate buffer pH (ranging from 6.0 to 8.0) with 4% liposomes on drug-liposome interactions. However, the effects were complex due to changes in API ionization and liposome surface charge, complicating the distinction between pH effects and liposome presence on API behavior. Our findings emphasize the significance of liposome composition, temperature, and pH in studying the interactions of liposomes with drugs, which is crucial for optimizing liposome-based drug delivery systems.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"2029-2038"},"PeriodicalIF":3.8,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961511/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143405007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fen Ma, Weibiao Wang, Mei Wang, Weiman Zhang, Shuxian Zhang, Gidion Wilson, Yuping Sa, Yue Zhang, Guoning Chen, Xueqin Ma
{"title":"Fluorescence paper sensor meets magnetic affinity chromatography: discovering potent neuraminidase inhibitors in herbal medicines.","authors":"Fen Ma, Weibiao Wang, Mei Wang, Weiman Zhang, Shuxian Zhang, Gidion Wilson, Yuping Sa, Yue Zhang, Guoning Chen, Xueqin Ma","doi":"10.1007/s00216-025-05761-y","DOIUrl":"10.1007/s00216-025-05761-y","url":null,"abstract":"<p><p>Given the inherent complexity of natural medicines, finding a straightforward and efficient method for identifying active ingredients remains a significant challenge, yet it is of paramount importance. Influenza virus neuraminidase (NA), a primary target for anti-influenza drug development, plays a crucial role in the infection process, making it essential to develop rapid and facile methods for screening NA inhibitors. Herein, we developed a novel and efficient analytical technique for the identification of NA inhibitors from complex herbal medicines by integrating dual sensing with affinity chromatography. This approach simplifies the experimental process and highlights the benefits of being quicker, more sensitive, and cost-effective. Regarding the biosensing section, the innovative concept of a 4-methylumbelliferyl-N-acetylneuraminic acid-NA-based fluorescence paper sensor strategy enables the rapid detection of NA inhibitors in complex herbal samples. In affinity chromatography, bioactive compounds were precisely captured, separated, and identified. The efficacy and reliability of the developed method were confirmed using both negative and positive controls. Then, the method was applied to screen for NA inhibitors in 20 different herbal medicines. The results revealed that Bupleurum chinense DC. exhibited the most pronounced inhibitory effect on NA. Subsequent analysis utilizing affinity chromatography identified three bioactive compounds, namely saikosaponin a, saikosaponin d, and baicalin, as the active agents responsible for this inhibitory effect, with IC<sub>50</sub> values of 177.3 μM, 262.9 μM, and 241.4 μM, respectively. Molecular docking studies further indicated that these three bioactive compounds exhibit a strong binding affinity with NA. This research provides novel insights into the screening of enzyme inhibitors within herbal medicines.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"1819-1832"},"PeriodicalIF":3.8,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143073372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in the development of N-glycopeptide enrichment materials based on hydrophilic interaction chromatography.","authors":"Li Cheng, Mingxian Huang, Hui Ren, Yiqiang Wang, Hongmei Cui, Mingming Xu","doi":"10.1007/s00216-024-05708-9","DOIUrl":"10.1007/s00216-024-05708-9","url":null,"abstract":"<p><p>Protein glycosylation is one of the most important post-translational modifications, implicated in the development of various diseases, including neurodegenerative diseases, diabetes, and cancers. However, the low content of glycoproteins in biological samples, the diversity and heterogeneity of glycan structures, and insensitive detection methods make glycosylation analysis challenging. As a result, efficient enrichment of glycopeptides from complex samples is a critical step. Efficient enrichment technology can increase the abundance of intact N-glycopeptides in complex biological samples, thereby improving the sensitivity and coverage of glycosylation analysis, which is of great significance for the accurate identification of biomarkers and the development of glycopeptide-based drugs. Among various separation methods for N-glycopeptides, hydrophilic interaction chromatography has received increasing attention, and a variety of enrichment materials have been developed. This article classifies and describes the relevant hydrophilic interaction chromatography materials and provides a comprehensive review of their applications in N-glycopeptide enrichment regarding selectivity, sensitivity, and enrichment performance. Future development trends of ideal glycopeptide enrichment materials are also discussed.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"1731-1749"},"PeriodicalIF":3.8,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142875942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ningning Guo, Jia Yang, Yixuan Li, Weiing Wang, Xiwen Liang, Qi Xu, Linna Du, Jing Qin
{"title":"A review of a colorimetric biosensor based on Fe<sub>3</sub>O<sub>4</sub> nanozymes for food safety detection.","authors":"Ningning Guo, Jia Yang, Yixuan Li, Weiing Wang, Xiwen Liang, Qi Xu, Linna Du, Jing Qin","doi":"10.1007/s00216-024-05679-x","DOIUrl":"10.1007/s00216-024-05679-x","url":null,"abstract":"<p><p>The issue of food safety poses a significant threat to human health. The colorimetric sensing method offers a highly sensitive response, visualization, and easy operation, making it highly promising for applications in the field of bioanalysis. Fe<sub>3</sub>O<sub>4</sub> nanomaterials not only possess the advantages of a straightforward preparation method, customizable functionalities, and facile surface modification, but also exhibit excellent peroxidase activity. The colorimetric biosensor based on a Fe<sub>3</sub>O<sub>4</sub> nanozyme is highly sensitive and has a low detection limit, making it widely recognized in the field of food safety detection. The review provides a summary of synthesis methods for Fe<sub>3</sub>O<sub>4</sub> nanozymes and discusses the effects of different synthesis methods on their structures. Additionally, the catalytic mechanism of the Fe<sub>3</sub>O<sub>4</sub> nanozyme and the influence of particle size, structure, pH, metal doping, and surface modifications on the peroxide activity are analyzed. Finally, we introduce the application of colorimetric sensors based on Fe<sub>3</sub>O<sub>4</sub> nanozymes in detecting antioxidants, heavy metal ions, pesticides, antibiotics, foodborne pathogen toxins, and other food additives and contaminants. This review is expected to provide reference and inspiration for future research on food safety detection through colorimetric sensors based on Fe<sub>3</sub>O<sub>4</sub> nanozymes.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"1713-1730"},"PeriodicalIF":3.8,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142816905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Haofeng Sun, Jianyi Liu, Qi Zhang, Lei Yang, Min Zhou, Dewei Song
{"title":"Advances in carcinoembryonic antigen detection: a review of clinical applications and standardization.","authors":"Haofeng Sun, Jianyi Liu, Qi Zhang, Lei Yang, Min Zhou, Dewei Song","doi":"10.1007/s00216-025-05772-9","DOIUrl":"10.1007/s00216-025-05772-9","url":null,"abstract":"<p><p>Carcinoembryonic antigen (CEA) is among the earliest identified tumor markers and remains extensively utilized in the diagnosis and management of colorectal cancer. The detection of CEA presents considerable challenges in the field of analytical chemistry, given its complexity. The most prevalent detection approach is the immunoassay, including the chemiluminescence immunoassay commonly employed in clinical settings; however, discrepancies between various methods persist. Mass spectrometry-based techniques offer enhanced accuracy as they circumvent matrix interference. Nonetheless, the intricate nature of proteins continues to pose significant challenges. This paper reviews recent advancements in CEA detection technologies, examines their clinical application potential from two key platforms, and addresses the standardization process of CEA detection. This paper highlights the importance of developing rapid and precise methods for CEA analysis in complex matrices and their standardization.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"1751-1764"},"PeriodicalIF":3.8,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143603204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Elimination of non-specific adsorption in the molecularly imprinted membrane: application for tetracycline detection.","authors":"Ouarda El Hani, Khalid Digua, Aziz Amine","doi":"10.1007/s00216-025-05804-4","DOIUrl":"10.1007/s00216-025-05804-4","url":null,"abstract":"<p><p>A vital challenge in using imprinted membranes for selective sensing is their non-specific adsorption (NSA). In this study, a novel, rapid, and green approach of NSA-free molecularly imprinted membrane (MIM) preparation was proposed. Sodium alginate was employed as a functional polymer (to interact with the template) and as a membrane matrix, then cross-linked with calcium before template removal to block the unreacted groups, followed by exposure to phosphate to chelate any remaining sites. Unlike the non-imprinted membrane (NIM), which is prepared similarly to MIM and lacks the template cavities, the MIM demonstrated exceptional imprinting factor (IF) (Q(NIM) ≈ 0 mg/g) compared to the initial IF of around 4 before NSA suppress, and a selectivity factor over 10 times greater than that of existing MIMs in the literature. The NSA-free MIM was used as a ready-to-use sensor for spectro-fluorescence and smartphone-based fluorescence detection of tetracycline (TC), achieving detection limits of 0.005 mg/L and 0.015 mg/L, respectively, which were below the maximal acceptable concentrations of TC in real samples. The detection of TC in milk and honey samples using the NSA-free MIM showed significant recoveries (86-101%) compared to those found by MIM before NSA supress (114-122%). The proposed methodology serves as an inspiration for extending NSA removal strategies to other MIMs based on various anionic polymers, including carboxylate, sulfonate, phosphonate, and phenolate anionic groups.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"2155-2168"},"PeriodicalIF":3.8,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143514155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"GNOme, an ontology for glycan naming and subsumption.","authors":"Wenjin Zhang, Michelle Vesser, Nathan Edwards","doi":"10.1007/s00216-025-05757-8","DOIUrl":"10.1007/s00216-025-05757-8","url":null,"abstract":"<p><p>While GlyTouCan provides stable identifiers for referencing glycan structures, they are not organized semantically. GNOme, a glycan naming and subsumption ontology and a member of the OBOFoundry, organizes GlyTouCan accessions for automated reasoning and interactive browsing of glycan structures by subsumption. GNOme makes it quick and easy to discover glycans with a specific degree of characterization; provides a text-based table of common synonyms for specific structures and compositions; enumerates glycan subsumption relationships for automated reasoning; and assigns each glycan to well-defined categories based on their degree of characterization. As an OBOFoundry ontology, GNOme can be readily integrated with other OBOFoundry ontologies and standards initiatives that need to refer to glycans with various degrees of characterization. GNOme is integrated with GlyGen, a glycoinformatics knowledge base, providing navigation to \"related glycans,\" and expanding the utility of species and glycan classification annotations. GNOme is available at https://gnome.glyomics.org/ and via GlyGen, the OBO Foundry, and GitHub.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"1961-1973"},"PeriodicalIF":3.8,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961537/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143373638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Henrik Reuter, Dirk Steinritz, Franz Worek, Harald John
{"title":"Phosphonylated tyrosine and cysteine disulfide adducts both generated from immunoglobulin G and human serum albumin indicate exposure to the nerve agent VX in vitro.","authors":"Henrik Reuter, Dirk Steinritz, Franz Worek, Harald John","doi":"10.1007/s00216-025-05762-x","DOIUrl":"10.1007/s00216-025-05762-x","url":null,"abstract":"<p><p>Pronase-catalyzed proteolysis is shown to produce single amino acid adducts of tyrosine (Tyr) and cysteine (Cys) obtained from both human serum albumin (HSA) and immunoglobulin G (IgG) after in vitro exposure of plasma to the nerve agent VX. Total plasma as well as isolated HSA and IgG yielded the Tyr residue phosphonylated with the ethyl methylphosphonic acid moiety, Tyr(-EMP). Furthermore, a Cys residue adducted with the diisopropylaminoethane thiol leaving group of the agent bound via a disulfide bridge, Cys(-DPAET), was also obtained from both proteins. Even though Tyr(-EMP) represents an internationally well-accepted biomarker of a VX-like agent its origin from plasma IgG has never been shown before. In addition, this is the first time that Cys(-DPAET) is presented as a biomarker of VX exposure clearly identifying the chemical nature of the V-type nerve agent's leaving group. Both biomarkers were detected after selective affinity-based solid-phase extraction (SPE) from plasma that yielded highly purified HSA and IgG as documented by sodium dodecyl polyamide gel electrophoresis (SDS-PAGE). Both biomarkers were found in the corresponding protein bands of HSA and IgG each after in-gel proteolysis with pronase. A micro liquid chromatography-electrospray ionization high-resolution tandem-mass spectrometry method (LC-ESI HR-MS/MS) was developed for the simultaneous detection of Tyr(-EMP) and Cys(-DPAET). The time for proteolysis was optimized for maximum biomarker yield. The method showed excellent selectivity and sensitivity, and the adducted proteins and biomarkers were found to be highly stable during storage. Accordingly, the presented method sheds more light on the molecular toxicology of VX and broadens the spectrum of methods suited for biomedical verification.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"1833-1845"},"PeriodicalIF":3.8,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913938/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143073375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Linxin Cao, Wenhui Chen, Wenyuan Kang, Chunyang Lei, Zhou Nie
{"title":"Engineering stimuli-responsive CRISPR-Cas systems for versatile biosensing.","authors":"Linxin Cao, Wenhui Chen, Wenyuan Kang, Chunyang Lei, Zhou Nie","doi":"10.1007/s00216-024-05678-y","DOIUrl":"10.1007/s00216-024-05678-y","url":null,"abstract":"<p><p>The precise target recognition and nuclease-mediated effective signal amplification capacities of CRISPR-Cas systems have attracted considerable research interest within the biosensing field. Guided by insights into their structural and biochemical mechanisms, researchers have endeavored to engineer the key biocomponents of CRISPR-Cas systems with stimulus-responsive functionalities. By the incorporation of protein/nucleic acid engineering techniques, a variety of conditional CRISPR-Cas systems whose activities depend on the presence of target triggers have been established for the efficient detection of diverse types of non-nucleic acid analytes. In this review, we summarized recent research progress in engineering Cas proteins, guide RNA, and substrate nucleic acids to possess target analyte-responsive abilities for diverse biosensing applications. Furthermore, we also discussed the challenges and future possibilities of the stimulus-responsive CRISPR-Cas systems in versatile biosensing.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":"1699-1711"},"PeriodicalIF":3.8,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142724501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}