Smart microfluidic devices integrated in electrochemical point-of-care platforms for biomarker detection in biological fluids.

IF 3.8 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS
Vincenzo Mazzaracchio, Fabiana Arduini
{"title":"Smart microfluidic devices integrated in electrochemical point-of-care platforms for biomarker detection in biological fluids.","authors":"Vincenzo Mazzaracchio, Fabiana Arduini","doi":"10.1007/s00216-025-06127-0","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing demand for decentralized, accessible, and rapid analytical tools is driving a transformation in healthcare toward point-of-care (POC) analytical technologies. The final aim is to reduce the cost of healthcare management originating from frequent patient hospitalizations and expensive and time-consuming laboratory-based analyses. This review explores the integration of microfluidic technologies with electrochemical sensing platforms, aiming to address the urgent need for POC analytical platforms. Owing to the miniaturization of fluid management systems and exploiting fluid automation, microfluidic devices enable low sample consumption, cost-effective analysis, and multiplexed detection, offering promising tools for real-time health monitoring. Among the other materials, the most commonly used substrates for microfluidics fabrication are paper, PDMS, and adhesive tape, which support custom-designed microchannel architectures, passive fluid motion, and wearable integration. Special attention is given to wearable sensors for sweat analysis, with various approaches employing capillary-driven flows and smart microfluidic designs to enable continuous and autonomous monitoring of biomarkers. Highlighting relevant works from the last 5 years, the review explores the role of integrated microfluidic electrochemical sensing devices in delivering advanced decentralized analytical platforms, with significant potential for clinical use in biomarker detection.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical and Bioanalytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00216-025-06127-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing demand for decentralized, accessible, and rapid analytical tools is driving a transformation in healthcare toward point-of-care (POC) analytical technologies. The final aim is to reduce the cost of healthcare management originating from frequent patient hospitalizations and expensive and time-consuming laboratory-based analyses. This review explores the integration of microfluidic technologies with electrochemical sensing platforms, aiming to address the urgent need for POC analytical platforms. Owing to the miniaturization of fluid management systems and exploiting fluid automation, microfluidic devices enable low sample consumption, cost-effective analysis, and multiplexed detection, offering promising tools for real-time health monitoring. Among the other materials, the most commonly used substrates for microfluidics fabrication are paper, PDMS, and adhesive tape, which support custom-designed microchannel architectures, passive fluid motion, and wearable integration. Special attention is given to wearable sensors for sweat analysis, with various approaches employing capillary-driven flows and smart microfluidic designs to enable continuous and autonomous monitoring of biomarkers. Highlighting relevant works from the last 5 years, the review explores the role of integrated microfluidic electrochemical sensing devices in delivering advanced decentralized analytical platforms, with significant potential for clinical use in biomarker detection.

智能微流控装置集成在电化学点护理平台的生物标志物检测在生物流体。
对分散、可访问和快速分析工具的需求日益增长,正在推动医疗保健向护理点(POC)分析技术转变。最终目标是降低因患者频繁住院和昂贵且耗时的基于实验室的分析而产生的医疗保健管理成本。本文综述了微流控技术与电化学传感平台的集成,旨在解决POC分析平台的迫切需求。由于流体管理系统的小型化和流体自动化的发展,微流体设备可以实现低样本消耗、低成本分析和多路检测,为实时健康监测提供了有前途的工具。在其他材料中,微流体制造最常用的基板是纸、PDMS和胶带,它们支持定制设计的微通道架构、被动流体运动和可穿戴集成。特别关注用于汗液分析的可穿戴传感器,采用各种方法采用毛细管驱动流和智能微流体设计,以实现对生物标志物的连续和自主监测。回顾了过去5年的相关工作,探讨了集成微流控电化学传感装置在提供先进的分散分析平台方面的作用,在生物标志物检测的临床应用中具有重要的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
4.70%
发文量
638
审稿时长
2.1 months
期刊介绍: Analytical and Bioanalytical Chemistry’s mission is the rapid publication of excellent and high-impact research articles on fundamental and applied topics of analytical and bioanalytical measurement science. Its scope is broad, and ranges from novel measurement platforms and their characterization to multidisciplinary approaches that effectively address important scientific problems. The Editors encourage submissions presenting innovative analytical research in concept, instrumentation, methods, and/or applications, including: mass spectrometry, spectroscopy, and electroanalysis; advanced separations; analytical strategies in “-omics” and imaging, bioanalysis, and sampling; miniaturized devices, medical diagnostics, sensors; analytical characterization of nano- and biomaterials; chemometrics and advanced data analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信