Fabian Dick, Alena Dietz, Stefan Asam, Michael Rychlik
{"title":"Development of a high-throughput UHPLC-MS/MS method for the analysis of Fusarium and Alternaria toxins in cereals and cereal-based food.","authors":"Fabian Dick, Alena Dietz, Stefan Asam, Michael Rychlik","doi":"10.1007/s00216-024-05486-4","DOIUrl":"10.1007/s00216-024-05486-4","url":null,"abstract":"<p><p>A QuEChERS (quick, easy, cheap, effective, rugged, and safe)-based multi-mycotoxin method was developed, analyzing 24 (17 free and 7 modified) Alternaria and Fusarium toxins in cereals via ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). A modified QuEChERS approach was optimized for sample preparation. Quantification was conducted using a combination of stable isotope dilution analysis (SIDA) for nine toxins and matrix-matched calibration for ten toxins. Quantification via a structurally similar internal standard was conducted for four analytes. Alternariol-9-sulfate (AOH-9-S) was measured qualitatively. Limits of detection (LODs) were between 0.004 µg/kg for enniatin A1 (ENN A1) and 3.16 µg/kg for nivalenol (NIV), while the limits of quantification were between 0.013 and 11.8 µg/kg, respectively. The method was successfully applied to analyze 136 cereals and cereal-based foods, including 28 cereal-based infant food products. The analyzed samples were frequently contaminated with Alternaria toxins, proving their ubiquitous occurrence. Interestingly, in many of those samples, some modified Alternaria toxins occurred, mainly alternariol-3-sulfate (AOH-3-S) and alternariol monomethyl ether-3-sulfate (AME-3-S), thus highlighting the importance of including modified mycotoxins in the routine analysis as they may significantly add to the total exposure of their parent toxins. Over 95% of the analyzed samples were contaminated with at least one toxin. Despite the general contamination, no maximum or indicative levels were exceeded.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493838/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aishan Ren, Lige Qiao, Kechun Li, Dongjian Zhu, Yuzhen Zhang
{"title":"Thiol-chromene click reaction-triggered mitochondria-targeted ratiometric fluorescent probe for intracellular biothiol imaging.","authors":"Aishan Ren, Lige Qiao, Kechun Li, Dongjian Zhu, Yuzhen Zhang","doi":"10.1007/s00216-024-05506-3","DOIUrl":"10.1007/s00216-024-05506-3","url":null,"abstract":"<p><p>Chromene as the efficient biothiol recognition site was widely used to develop fluorescent probes based on thiol-chromene click reaction. However, chromene-based fluorescent probes with the both properties of ratiometric measurement and mitochondria-targeted function have not been reported and remain challenging. In this paper, we skillfully designed and synthesized the first mitochondria-targeted ratiometric fluorescent probe (Probe 1) for biothiols based on chromene. Upon addition of biothiols (Cys, Hcy, and GSH), the absorption and fluorescence spectra of Probe 1 changed from 490 to 426 nm and from 567 to 498 nm respectively, accompanied by color changes from orange to pale yellow under natural light and from orange to blue under a 365-nm UV lamp, which can be attributed to the click reaction of biothiols with α,β-unsaturated ketone of chromene moiety, subsequent pyran ring-opening, and phenol formation as well as 1,6-elimination of p-hydroxybenzyl moiety. Probe 1 not only exhibited high sensitivity (LODs of 149 nM, 133 nM, and 116 nM for Cys, GSH, and Hcy respectively), rapid response, and excellent selectivity for biothiols (Cys, Hcy, and GSH), but also could target in mitochondria and ratiometrically image the fluctuation of intracellular biothiols. Moreover, the novel design strategy of modifying chromene to the N atom of pyridine was proposed for the first time.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhengjun Wu, Taotao Zhao, Xingyue Jiang, Dan Zhang, Feiyi Wang, Xiaoming Ren, Zhao Wang, Erfei Wang, Jun Ren
{"title":"A near-infrared fluorescent probe with a large Stokes shift for the detection and imaging of biothiols in vitro and in vivo.","authors":"Zhengjun Wu, Taotao Zhao, Xingyue Jiang, Dan Zhang, Feiyi Wang, Xiaoming Ren, Zhao Wang, Erfei Wang, Jun Ren","doi":"10.1007/s00216-024-05537-w","DOIUrl":"10.1007/s00216-024-05537-w","url":null,"abstract":"<p><p>In this study, a new near-infrared (NIR) fluorescent turn-on probe featuring a large Stokes shift (198 nm) was developed for the detection of biothiols. The probe was based on a dicyanoisophorone derivative serving as the fluorophore and a 2,4-dinitrobenzenesulfonyl (DNBS) group functioning as both a recognition site and a fluorescence quencher. In the absence of biothiols, the fluorescence of the probe was low due to the photoinduced electron transfer (PET) effect between the fluorophore and DNBS. Upon the presence of biothiols, the DNBS group underwent a nucleophilic aromatic substitution reaction with the sulfhydryl group of biothiols, leading to the release of the fluorophore and a notable emission peak at 668 nm. This developed probe exhibited exceptional selectivity and sensitivity to biothiols in solution, with an impressive detection limit of 28 nM for cysteine (Cys), 22 nM for homocysteine (Hcy), and 24 nM for glutathione (GSH). Furthermore, the probe demonstrated its applicability by successfully visualizing both endogenous and exogenous biothiols in living systems.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dmitriy D Matyushin, Anastasia E Karnaeva, Anastasia Yu Sholokhova
{"title":"Critical evaluation of the NIST retention index database reliability with specific examples.","authors":"Dmitriy D Matyushin, Anastasia E Karnaeva, Anastasia Yu Sholokhova","doi":"10.1007/s00216-024-05562-9","DOIUrl":"10.1007/s00216-024-05562-9","url":null,"abstract":"<p><p>The NIST gas chromatographic retention index database is widely used in gas chromatography-mass spectrometry analysis. For many compounds, the NIST database contains many entries that are presumably obtained independently of each other. We showed with specific examples that there are cases in the NIST database where several entries exist for the same compound, and all of them are equally erroneous (an error of more than 100 units). In particular, we demonstrated that all retention index values for such an important compound as imidazole for non-polar stationary phases in the NIST database are erroneous. In addition to imidazole, a similar situation is observed for four more nitrogen-containing heterocyclic compounds. For certainty, measurements were performed under several conditions, using various temperature programs, and using two specimens of columns. The structures were confirmed using nuclear magnetic resonance and mass spectrometry. It was shown with specific examples that many values are not reliable: either data were obtained using standard samples of undescribed origin without confirmation (without even using mass spectrometry) or, in some cases, standard samples were not used at all, and the retention index was obtained for a mixture component identified using a mass spectral library search. Some \"independent\" values are not such but are repeated publications of the same data (secondary sources), or simply several values taken from the same source. In the work, an analysis was carried out and assumptions were made about how several equally incorrect retention index values could appear in the NIST database.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142338683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Metabolic profile characterization of voxelotor in human urine based on in vivo and in vitro models for doping control.","authors":"Xueqi Liang, Tian Tian, Ziling Zheng, Hao Geng, Yuanhong Shan, Xiaojun Deng","doi":"10.1007/s00216-024-05555-8","DOIUrl":"10.1007/s00216-024-05555-8","url":null,"abstract":"<p><p>Voxelotor was approved for the treatment of sickle cell anemia as a potent hemoglobin S polymerization inhibitor. Owing to its ability to affect blood components and its potential to enhance athletic performance, voxelotor was included in the prohibited list issued by the World Anti-Doping Agency in 2023, banning its use both in and out of competition. This study aimed to comprehensively investigate the metabolic profile of voxelotor in human urine and identify suitable metabolites for long-term analytical retrospectivity in doping control. A novel strategy for metabolite identification was established by combining in vivo human administration with isotope labeling-based in vitro metabolism analysis. A single microdose of voxelotor was administered orally to five volunteers, and urine samples were collected for up to 28 days post-administration. Concurrently, in vitro incubation of human liver microsomes with voxelotor and D3-voxelotor was conducted, and the microsomal incubates were analyzed via liquid chromatography-high-resolution mass spectrometry. Targeted metabolite searches in human urine samples and automated nontargeted screening of isotope metabolite ion pairs in incubation samples led to the discovery of 9 phase I metabolites and 23 phase II metabolites. Analysis of the urine excretion curves revealed that 4 metabolites, along with voxelotor, were suitable for long-term anti-doping monitoring, with a detection window exceeding 20 days. Using both in vivo and in vitro metabolic models, this study provides comprehensive insight into the metabolic profile of voxelotor in human urine for the first time, enhancing the capacity for doping screening and extending the retrospectivity of voxelotor detection.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142370570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rapid separation of bile acid isomers via ion mobility mass spectrometry by complexing with spiramycin.","authors":"Manli Zhang, Yao Pan, Shugai Feng, Chaoxian Chi, Fangling Wu, Chuan-Fan Ding","doi":"10.1007/s00216-024-05553-w","DOIUrl":"10.1007/s00216-024-05553-w","url":null,"abstract":"<p><p>Bile acid (BA) is one of the main active components of bile and has multiple isomers, the structure or content of its isomers often changes due to diseases and other health problems; thus, the accurate detection of BA isomers is very important. In this study, two groups of BA isomers of glycine-conjugated BAs and taurine-conjugated BAs were simultaneously separated and quantitatively analyzed by ion mobility mass spectrometry (IM-MS). Especially, baseline mobility separation between the isomers was achieved by the formation of binary complexes via simple interaction with spiramycin (SPM), for which a separation resolution (R<sub>p-p</sub>) of 1.96 was reached. Moreover, BA isomers were quantitatively analyzed, and the limit of detection (LOD) of absolute quantification for TCDCA/TUDCA and GUDCA/GCDCA/GHDCA was 0.514 and 0.611 ng∙mL<sup>-1</sup>, respectively; the LODs for molar ratio ranges of relative quantification for TCDCA/TUDCA, GUDCA/GHDCA, and GCDCA/GHDCA were 1:18-30:1, 1:18-21:1, and 1:19-21:1, respectively. Additionally, BA isomers analyzed in pig bile powder and bear bile powder were measured, which were in good consistency with those labeled, revealing the differences in BA composition and content between the two powders. Finally, BA detection and recovery analyses were performed on serum samples, with a recovery rate of ≥73.69%, RSD of ≤6.8%, and S<sub>R</sub> (standard deviation of recoveries, the degree of difference between measured values and average recovery) of ≤1.27. Due to the simple, rapid, and lack of need for complex sample preparation and chromatographic separation, the proposed method can be an effective method for BA detection in practical samples.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tissue derivatization for visualizing lactate and pyruvate in mouse testis tissues using matrix-assisted laser desorption/ionization-mass spectrometry imaging.","authors":"Erika Nagano, Kazuki Odake, Shuichi Shimma","doi":"10.1007/s00216-024-05559-4","DOIUrl":"10.1007/s00216-024-05559-4","url":null,"abstract":"<p><p>Pyruvate and lactate are the final metabolites of the glycolytic system that are formed under oxygen-rich and anaerobic conditions, respectively. They play an important role in energy metabolism. Obtaining a tissue distribution image of pyruvate and lactate holds great significance in molecular biology because the glycolytic system plays an essential role in diseases, such as tumors and diabetes; microbial activities, such as alcohol production and lactic acid fermentation; and maintaining homeostasis in the gut environment. However, it is difficult to obtain images of the distribution of in vivo metabolites because of the low detection sensitivities of current methods. In this study, a novel derivatization method for pyruvate and lactate was developed using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) to detect pyruvate and lactate in vivo and obtain biodistribution images. We investigated derivatization methods using readily available 3-nitrophenylhydrazine (3NPH), the addition of which improves the sensitivity of pyruvate detection, and the distribution of pyruvate in mouse testes was successfully visualized. Furthermore, the distribution of lactate in the mouse testes could be visualized, and improved detection sensitivity for the main metabolites of the tricarboxylic acid cycle was demonstrated. This derivatization method can be used to detect carboxyl-containing metabolites, including pyruvate, via MALDI-MSI. Furthermore, 3NPH forms amide bonds with carbonyl, phosphate, and carboxyl groups, suggesting the possibility of visualizing its distribution in many metabolites.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541321/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Label-free detection and simultaneous viability determination of CTCs by lens-free imaging cytometry.","authors":"Ya Li, Yu Li, Xu Wang, Kang Wang, Haoliang Li, Pengfei Wang, Qi Xue, Feng Xu, Wenchang Zhang, Xiaonan Yang, Bing Chen","doi":"10.1007/s00216-024-05624-y","DOIUrl":"https://doi.org/10.1007/s00216-024-05624-y","url":null,"abstract":"<p><p>The detection of extremely rare circulating tumor cells (CTCs) in peripheral blood and simultaneously identifying their viabilities are significant for cancer diagnosis and prognosis as well as monitoring the efficacy of personalized treatment. A lens-free imaging system features high-resolution images taken over a large field of view (FOV), which has great potential for CTC detection and viability determination. But current still lens-free systems restrict the application for CTC detection in real samples due to the inherent limitations of lens-free technology: (1) the location of cells in the FOV will affect the imaging; (2) the extremely rare CTCs probably did not exist in one observation. In this paper, we realized the detection of CTCs in whole blood and the simultaneous determination of their viabilities by lens-free imaging cytometry. Our in-flow system plus a large FOV range of lens-free imaging highly increased the detection rate of rare CTCs with a high throughput of 150,000 cells per minute and improved the recognition efficiency for blood cells, living/dead CTCs by using a cell tracing-assisted deep learning algorithm. With this method, the average precision of blood cells, living/dead lung cancer cells A549, and living/dead colon cancer cells SW620 reached 98.80%, 97.88%, 97.93%, 97.72%, and 98.60%, respectively. Our system got a highly consistent result with the manual counting method using fluorescent staining (Pearson's r 99.93% for SW620) and can easily detect as few as 10 dead or living CTCs from 100,000 white blood cells (WBCs). Finally, real clinical samples were detected in our system. Both dead and living CTCs were found in all six advanced-stage cancer patients, and the number of living CTCs per million WBCs ranged from 13 to 39, more than that of the dead CTCs (5 to 25), while none of the CTCs were detected in six healthy control subjects. Moreover, we also found that CTCs died very quickly after leaving the human body, indicating that CTCs should be studied as soon as possible after sampling. Although this method is implemented for CTCs, it can also be used for the detection of other rare cells.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinling Cui, Xiaoguang Meng, Zhishang Hu, Peize Wu, Huan Yao, Ming Li, Ling Lin
{"title":"Analysis of multi-disulfide bridges for insulin aspart by stepwise reduction and differentiated alkylation.","authors":"Xinling Cui, Xiaoguang Meng, Zhishang Hu, Peize Wu, Huan Yao, Ming Li, Ling Lin","doi":"10.1007/s00216-024-05597-y","DOIUrl":"https://doi.org/10.1007/s00216-024-05597-y","url":null,"abstract":"<p><p>Disulfide bridge, an important post-translation modification in protein, plays a key role in stabilizing three-dimensional structure of proteins, maintaining correct folded conformation, and thus regulating the biological activities. Disulfide bridge assignment is essential to understand the essence of life process and to develop protein pharmaceutical. In this study, a novel method termed as stepwise reduction and differentiated alkylation (SRDA) was developed analyzing disulfide connectivity for proteins. As a demonstration, three disulfide bridges in insulin aspart were successfully characterized using this SRDA method combined with LC-HRMS<sup>n</sup>. Firstly, tris (2-carboxyethyl) phosphine (TCEP) was used to partially reduce disulfide bridges with N-ethylmaleimide (NEM) used to block the generated free thiol. Then, dithiothreitol (DTT) was used to reduce the rest disulfide bonds with iodoacetamide (IAM) used to block the newly generated free thiol. After that, an LC-HRMS<sup>n</sup> method was established to assign disulfide connectivity for an insulin aspart study material, based on the different mass shifts arising from differentiated alkylation. Moreover, this approach allows for the quantitative analysis of various disulfide bond pairings, which can be applied to studies on the consistency and stability among different batches of samples. The results show that SRDA is a valuable tool for reliable quality control and quality assessment of disulfide-rich proteins such as insulin analogues.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Colorimetric aptasensing of microcystin-LR using DNA-conjugated polydiacetylene.","authors":"Man Zhang, Qicheng Zhang, Lei Ye","doi":"10.1007/s00216-024-05617-x","DOIUrl":"https://doi.org/10.1007/s00216-024-05617-x","url":null,"abstract":"<p><p>Polydiacetylene (PDA) holds promise as a versatile material for biosensing applications due to its unique optical properties and self-assembly capabilities. In this study, we developed a colorimetric detection biosensor system utilizing PDA and aptamer for the detection of microcystin-LR (MC-LR), a potent hepatotoxin found in cyanobacteria-contaminated environments. The biosensor was constructed by immobilizing MC-LR-specific aptamer on magnetic beads, where the aptamer was hybridized with a urease-labelled complementary DNA (cDNA-urease). Upon binding MC-LR, the aptamer undergoes a conformational change to release cDNA-urease. The released cDNA-urease is subsequently captured by PDA bearing a single-stranded DNA (ssDNA). The enzymatic reaction triggers a distinctive color transition of PDA from blue to red. The results demonstrate exceptional sensitivity, with a linear detection range of 5-100 ng/mL and a limit of detection as low as 1 ng/mL. The practicability of the colorimetric method was demonstrated by detecting different levels of MC-LR in spiked water samples. The recoveries ranged from 77.3 to 102% and the color change, visible to the naked eye, underscores the practical utility for on-site applications. Selectivity for MC-LR over other microcystin variants (MC-RR and MC-YR) was confirmed. The colorimetric detection platform capitalizes on the properties of PDA and nucleic acid, offering a robust method for detecting small molecules with potential applications in environmental monitoring and public health.</p>","PeriodicalId":462,"journal":{"name":"Analytical and Bioanalytical Chemistry","volume":null,"pages":null},"PeriodicalIF":3.8,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142520643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}