Sensing and Bio-Sensing Research最新文献

筛选
英文 中文
A highly sensitive and selective one-dimensional Ag@hydrogen-bonded organic framework-based biosensor for the detection of the prohibited food additive ractopamine 一种用于检测违禁食品添加剂莱克多巴胺的高灵敏度和选择性一维Ag@hydrogen-bonded有机框架生物传感器
IF 4.9
Sensing and Bio-Sensing Research Pub Date : 2025-09-30 DOI: 10.1016/j.sbsr.2025.100883
Mahmoud Roushani , Fatemeh Hamdi , Azam Zare Asadabadi , S. Jafar Hoseini
{"title":"A highly sensitive and selective one-dimensional Ag@hydrogen-bonded organic framework-based biosensor for the detection of the prohibited food additive ractopamine","authors":"Mahmoud Roushani ,&nbsp;Fatemeh Hamdi ,&nbsp;Azam Zare Asadabadi ,&nbsp;S. Jafar Hoseini","doi":"10.1016/j.sbsr.2025.100883","DOIUrl":"10.1016/j.sbsr.2025.100883","url":null,"abstract":"<div><div>In this study, a novel and highly responsive biosensor was engineered for the identification of ractopamine (RAC), an illicit additive used to stimulate muscle development in farm animals. A hydrogen-bonded organic framework (HOF) was synthesized via a simple, economical, and environmentally friendly approach. To reinforce the electrochemical performance, silver nanoparticles (Ag NPs) were integrated into the HOF, thereby enlarging the electrode's active surface area and facilitating greater immobilization of RAC-specific aptamers (Apt). The successful immobilization of Apt RAC on the Ag@HOF-coated glassy carbon electrode (GCE) was validated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). This sensing platform displayed a wide linear detection range from 0.01 fM - 0.25 nM, with an outstanding detection limit of 4 aM. Furthermore, the sensor demonstrated excellent specificity against potential interfering agents. Its reliable performance was also confirmed in complex biological samples, including milk and meat, indicating strong potential for practical, real-world applications.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"50 ","pages":"Article 100883"},"PeriodicalIF":4.9,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145217158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in the detection of Sortase A activity in Staphylococcus aureus 金黄色葡萄球菌中分类酶A活性检测的研究进展
IF 4.9
Sensing and Bio-Sensing Research Pub Date : 2025-09-30 DOI: 10.1016/j.sbsr.2025.100886
Sujuan Sun , Junqing Yang , Xinya Han
{"title":"Advances in the detection of Sortase A activity in Staphylococcus aureus","authors":"Sujuan Sun ,&nbsp;Junqing Yang ,&nbsp;Xinya Han","doi":"10.1016/j.sbsr.2025.100886","DOIUrl":"10.1016/j.sbsr.2025.100886","url":null,"abstract":"<div><div><em>Staphylococcus aureus</em> (<em>S. aureus</em>) is one of the most common and important pathogenic bacteria and is the leading cause of hospital-acquired infections. Sortase A (SrtA), a cell surface-anchored transpeptidase in <em>S. aureus</em>, plays a critical role in the attachment of virulence-associated proteins to the cell wall. Given that SrtA is not directly involved in bacterial survival but mainly regulates pathogenicity, it has emerged as an attractive therapeutic target for developing anti-virulence strategies. Quantitative analysis of SrtA activity provides valuable insights into <em>S. aureus</em> colonization levels and virulence potential. Moreover, the detection method for SrtA facilitates the screening of inhibitors, and contributes to not only fundamental biological research but also pharmaceutical development and medical diagnostics. In this review, we discuss recent advances and modern techniques in novel methods for identifying SrtA activity, such as porous silicon resonant microcavities (pSiRM), magnetic nanoparticles, fluorescent proteins, and fluorescence resonance energy transfer (FRET)-based technologies. Additionally, we provide an objective evaluation of current biosensing technologies including high-performance liquid chromatography (HPLC), fluorescent, and electrochemical biosensors, with particular emphasis on their respective advantages and limitations in SrtA activity detection and inhibitor screening. This review aims to provide scientific evidence and potential strategies for developing new therapies against drug-resistant <em>S. aureus</em> while highlighting promising directions for next-generation anti-infective strategies.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"50 ","pages":"Article 100886"},"PeriodicalIF":4.9,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145217160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The role of S100B protein as a diagnostic biomarker for brain injury S100B蛋白作为脑损伤诊断生物标志物的作用
IF 4.9
Sensing and Bio-Sensing Research Pub Date : 2025-09-30 DOI: 10.1016/j.sbsr.2025.100888
Nataliia Gnyliukh , James Wei , Winfried Neuhaus , Rabah Boukherroub , Sabine Szunerits
{"title":"The role of S100B protein as a diagnostic biomarker for brain injury","authors":"Nataliia Gnyliukh ,&nbsp;James Wei ,&nbsp;Winfried Neuhaus ,&nbsp;Rabah Boukherroub ,&nbsp;Sabine Szunerits","doi":"10.1016/j.sbsr.2025.100888","DOIUrl":"10.1016/j.sbsr.2025.100888","url":null,"abstract":"<div><div>S100B is a brain protein, produced mainly by astrocytes, that indicates neurological injury by leaking into the bloodstream, cerebrospinal fluid (CSF), and urine. Elevated levels of S100B in blood and CSF serve as a marker for acute neural injury such as traumatic brain injury (TBI) and stroke. The extent of S100B elevation can help predict clinical outcomes after brain injury and monitor the effectiveness of treatment. Measuring S100B levels over time, or using a trajectory analysis, can provide more reliable information about injury progression and help predict secondary injuries. In order to predict clinical outcomes after brain injury, as well as to provide a basis for appropriate treatment and indicate treatment success, it is imperative to have appropriate analytical tools at hand. In this review, we focus on the research progress of S100B as an “alert” signalling molecule in the connection of brain injuries and critically assess current diagnostic assays for S100B, including Enzyme-Linked Immunosorbent Assay (ELISA) kits, biosensors, and point-of-care (PoC) devices.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"50 ","pages":"Article 100888"},"PeriodicalIF":4.9,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145217161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasensitive, label-free voltammetric detection of bis(2-ethylhexyl) phthalate based on poly-l-lysine/black phosphorus-porous graphene‑silver nanocomposite 基于聚赖氨酸/黑磷-多孔石墨烯-银纳米复合材料的超灵敏无标记邻苯二甲酸双(2-乙基己基)伏安检测
IF 4.9
Sensing and Bio-Sensing Research Pub Date : 2025-09-30 DOI: 10.1016/j.sbsr.2025.100887
Chuanxiang Zhang , Jie Zhou , Shuo Li , Changchun Hu , Yimin Tan , Yan Deng
{"title":"Ultrasensitive, label-free voltammetric detection of bis(2-ethylhexyl) phthalate based on poly-l-lysine/black phosphorus-porous graphene‑silver nanocomposite","authors":"Chuanxiang Zhang ,&nbsp;Jie Zhou ,&nbsp;Shuo Li ,&nbsp;Changchun Hu ,&nbsp;Yimin Tan ,&nbsp;Yan Deng","doi":"10.1016/j.sbsr.2025.100887","DOIUrl":"10.1016/j.sbsr.2025.100887","url":null,"abstract":"<div><div>Di(2-ethylhexyl) phthalate (DEHP), a widely used plasticizer and known endocrine disruptor, has the potential to migrate through the food chain and accumulate in the human body, thereby posing significant risks to human health. Therefore, the accurate and timely detection of DEHP is of critical importance. A novel electrochemical molecularly imprinted sensor was developed based on poly-<span>l</span>-lysine/black phosphorus-porous graphene‑silver (PLL/BP-PG-Ag) nanocomposite for simple, rapid, highly sensitive and specific detection of trace di(2-ethylhexyl) phthalate (DEHP). The PLL/BP-PG-Ag nanocomposites, exhibiting excellent electrochemical properties, was synthesized through a simple solvothermal and ultrasonic method. The molecularly imprinted sensor (MIP/PLL/BP-PG-Ag/GCE) was fabricated via cyclic voltammetry electropolymerization using PLL/BP-PG-Ag as the substrate, <em>o</em>-phenylenediamine as the functional monomer, and DEHP as the template molecule. Under optimal experimental conditions, differential pulse voltammetry (DPV) analysis showed a wide linear range from 10fM to 2 μM, with a detection limit (LOD) of 7.09 fM and a quantification limit (LOQ) of 23.61 fM. The sensor also showed excellent selectivity when exposed to structurally similar interfering substances. The proposed MIP sensor was successfully applied to detect trace DEHP in cigarette packaging paper samples, yielding satisfactory recovery results.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"50 ","pages":"Article 100887"},"PeriodicalIF":4.9,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145217159","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cost-effective and novel Fe3O4-IL/CPE nanosensor for simultaneous electrochemical detection of theophylline and methyldopa drugs 同时电化学检测茶碱和甲基多巴药物的新型Fe3O4-IL/CPE纳米传感器
IF 4.9
Sensing and Bio-Sensing Research Pub Date : 2025-09-30 DOI: 10.1016/j.sbsr.2025.100889
Seyed Karim Hassaninejad-Darzi, Ali Ahangar-Samakosh, Fatemeh Aran-Dinaki, Mohammad Asadollahi-Baboli
{"title":"Cost-effective and novel Fe3O4-IL/CPE nanosensor for simultaneous electrochemical detection of theophylline and methyldopa drugs","authors":"Seyed Karim Hassaninejad-Darzi,&nbsp;Ali Ahangar-Samakosh,&nbsp;Fatemeh Aran-Dinaki,&nbsp;Mohammad Asadollahi-Baboli","doi":"10.1016/j.sbsr.2025.100889","DOIUrl":"10.1016/j.sbsr.2025.100889","url":null,"abstract":"<div><div>Simultaneous determination of methyldopa (MD), and theophylline (THEO) drugs was developed by a modified carbon paste electrode (CPE) with magnetite iron oxide nanostructure and imidazolium ionic liquid (IL). The obtained results displayed that the Fe<sub>3</sub>O<sub>4</sub>-IL/CPE showed higher oxidation currents versus bare CPE and other modified electrodes. The pH 3.0 for PBS, temperature 34 °C, IL 5.0 %, and Fe<sub>3</sub>O<sub>4</sub> 9.0 % in the fabricated sensor were developed as the maximum anodic currents. In the above optimal conditions, the linear responses with the DPV technique were attained in the 2.72–180.32 μM and 7.64–137.93 μM for MD and THEO, respectively. Also, the LOD of 0.90 and 2.52 μM were obtained for MD and THEO, respectively. We, also considered measurement of MD and THEO drugs in human plasma and mixtures of tablets as a real sample and the results show a good recovery percentage.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"50 ","pages":"Article 100889"},"PeriodicalIF":4.9,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145217157","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrochemical sensor modified with heterostructure of graphitic carbon nitride/gold nanoparticles for non-invasive uric acid detection in saliva 石墨氮化碳/金纳米颗粒异质结构修饰的无创唾液尿酸检测电化学传感器
IF 4.9
Sensing and Bio-Sensing Research Pub Date : 2025-09-16 DOI: 10.1016/j.sbsr.2025.100881
Shymaa S. Soliman , Amr M. Mahmoud , Aya A. Mouhamed , Ola G. Hussein
{"title":"Electrochemical sensor modified with heterostructure of graphitic carbon nitride/gold nanoparticles for non-invasive uric acid detection in saliva","authors":"Shymaa S. Soliman ,&nbsp;Amr M. Mahmoud ,&nbsp;Aya A. Mouhamed ,&nbsp;Ola G. Hussein","doi":"10.1016/j.sbsr.2025.100881","DOIUrl":"10.1016/j.sbsr.2025.100881","url":null,"abstract":"<div><div>A gold nanoparticle/graphitic carbon nitride heterostructure nanocomposite was synthesized via an in-situ chemical reduction of Au<sup>3+</sup> on the surface of graphitic carbon nitride and was applied for the non-invasive electrochemical detection of uric acid (UA) in human saliva. In this configuration, gold nanoparticles (Au-NPs) acted as highly active electrocatalytic sites, while graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) served as a high-surface-area scaffold facilitating uniform nanoparticles dispersion and efficient electron transfer. Morphological and elemental characterization using scanning electron microscopy (SEM), High Resolution Transmission Electron Microscopy (HRTEM), energy-dispersive X-ray spectroscopy (EDX), BET analysis, and infrared spectroscopy (IR) confirmed the homogeneous distribution of Au-NPs anchored to the g-C<sub>3</sub>N<sub>4</sub> sheets. Furthermore, electrochemical characterization was performed through electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). Electrochemical measurements demonstrated that Au-NPs@g-C<sub>3</sub>N<sub>4</sub>/CPE generated significantly higher UA oxidation peak currents compared with bare CPE. Under optimized pH conditions, accumulation potential, and differential pulse parameters the sensor exhibited a well-defined linear calibration range 0.5–10.0 μM (<em>r</em> = 0.9943) with a detection limit of 0.31 μM uric acid. Selectivity tests in artificial saliva showed negligible signal deviations (≤ ±2 %) in the presence of common salivary interferents such as ascorbic acid, creatinine, and glucose. Spike and recovery experiments using actual saliva samples achieved recoveries of 95.56-98.27 % confirming high analytical accuracy in complex biological matrices. Furthermore, the electrode retained over 90 % of its initial response after 60 days of ambient storage indicating excellent stability. The synergistic integration of Au-NPs with g-C<sub>3</sub>N<sub>4</sub> significantly enhanced catalytic activity, electron transport, and UA adsorption making the Au-NPs@g-C<sub>3</sub>N<sub>4</sub>/CPE a cost-effective, sensitive, and reliable platform for point-of-care UA monitoring in saliva for clinical diagnostics and health applications.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"50 ","pages":"Article 100881"},"PeriodicalIF":4.9,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145119150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selection, identification and binding mechanism analysis of nucleic acid aptamer for Azaspiracid-1 Azaspiracid-1核酸适体的选择、鉴定及结合机制分析
IF 4.9
Sensing and Bio-Sensing Research Pub Date : 2025-09-12 DOI: 10.1016/j.sbsr.2025.100878
Yunyi Cui , Jiaping Yang , LiangHua Wang
{"title":"Selection, identification and binding mechanism analysis of nucleic acid aptamer for Azaspiracid-1","authors":"Yunyi Cui ,&nbsp;Jiaping Yang ,&nbsp;LiangHua Wang","doi":"10.1016/j.sbsr.2025.100878","DOIUrl":"10.1016/j.sbsr.2025.100878","url":null,"abstract":"<div><div>Azaspiracid-1 (AZA-1), identified as a polyether marine phycotoxin, often causes severe gastrointestinal symptoms and threatens human health, and its outbreak also dramatically disrupted the economy of areas where shellfish are harvested and processed. However, to date, there are still a lack of effective detection methods for AZA-1. Nucleic acid aptamers, capable of specific, high-affinity molecular binding, have been increasingly explored in the field of biomedical diagnosis in recent years. Here, we utilized capture-systematic evolution of ligands by exponential enrichment (Capture-SELEX) to obtain the nucleic acid aptamer of AZA-1, and employed biolayer interferometry (BLI) to validate the affinity and specificity between aptamers and AZA-1. Simultaneously, we applied molecular docking and dynamics simulation to determine the possible binding mechanism between aptamers and AZA-1. This study provided a feasible solution for selection, identification and binding mechanism analysis of AZA-1 aptamer and laid a favorable foundation for AZA-1 detection in the future.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"50 ","pages":"Article 100878"},"PeriodicalIF":4.9,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145119229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface-engineered chitosan-coated MIL-53(Fe) nanozyme with synergistic effect on peroxidase/oxidase mimic as a highly sensitive biosensor for the colorimetric detection of hydrogen peroxide 表面工程壳聚糖包被MIL-53(Fe)纳米酶对过氧化物酶/氧化酶模拟物具有协同作用,可作为过氧化氢比色检测的高灵敏度生物传感器
IF 4.9
Sensing and Bio-Sensing Research Pub Date : 2025-09-10 DOI: 10.1016/j.sbsr.2025.100879
Parisa Bahmani, Majid Moghadam, Shahram Tangestaninejad, Iraj Mohammadpoor-Baltork, Vahideh Asadi, Valiollah Mirkhani
{"title":"Surface-engineered chitosan-coated MIL-53(Fe) nanozyme with synergistic effect on peroxidase/oxidase mimic as a highly sensitive biosensor for the colorimetric detection of hydrogen peroxide","authors":"Parisa Bahmani,&nbsp;Majid Moghadam,&nbsp;Shahram Tangestaninejad,&nbsp;Iraj Mohammadpoor-Baltork,&nbsp;Vahideh Asadi,&nbsp;Valiollah Mirkhani","doi":"10.1016/j.sbsr.2025.100879","DOIUrl":"10.1016/j.sbsr.2025.100879","url":null,"abstract":"<div><div>The iron-based metal-organic framework (MOF) MIL-53(Fe) was successfully functionalized with chitosan through a simple and efficient post-synthetic strategy. This facile modification significantly enhances its catalytic properties, yielding a multifunctional nanocomposite that mimics both peroxidase and oxidase enzymatic activities. The chitosan-coated MIL-53(Fe), an inexpensive and biocompatible material, exhibits superior peroxidase-mimetic catalytic activity compared to its unmodified counterpart, enabling highly sensitive colorimetric biosensing. Upon interaction with hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), the nanocomposite facilitates the catalytic oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB), producing a deep blue solution with distinct UV–vis absorption peaks at 369 and 652 nm. This system demonstrates a detection limit of 0.3 μM. Furthermore, our optimized catalytic conditions (40 °C, pH 4.0, 10 min, catalyst concentration: 0.11 mg mL<sup>−1</sup>) underscore the remarkable efficiency of our MOF-based peroxidase mimic. Notably, both peroxidase and oxidase activities are seamlessly executed under identical reaction conditions, simplifying multi-step enzymatic processes and eliminating the need for separate optimization protocols. This unique feature enhances overall efficiency while significantly reducing operational costs. The intrinsic rapid catalytic kinetics, reflected in the high <em>V</em><sub><em>max</em></sub> values of 147.77 × 10<sup>−8</sup> Ms.<sup>−1</sup> for H<sub>2</sub>O<sub>2</sub> and 53.11 × 10<sup>−8</sup> Ms.<sup>−1</sup> for TMB, further reinforce the system's viability for real-time sensing applications. Our functionalized MIL-53(Fe) nanocomposite presents a groundbreaking advancement in MOF-based biomimetic catalysis, with high sensitivity, operational simplicity, and cost-effectiveness. Finally, due to the excellent catalytic activity of chitosan-coated MIL-53(Fe), it was successfully utilized to detect H<sub>2</sub>O<sub>2</sub> in real samples, including tap water and well water.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"50 ","pages":"Article 100879"},"PeriodicalIF":4.9,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145047042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chemisorbed gold Nanorods on optical fibers for refractive index sensing 用于折射率传感的光纤化学吸收金纳米棒
IF 4.9
Sensing and Bio-Sensing Research Pub Date : 2025-09-06 DOI: 10.1016/j.sbsr.2025.100869
Gulfam Mushtaq , V.V.R. Sai , Sulalit Bandyopadhyay
{"title":"Chemisorbed gold Nanorods on optical fibers for refractive index sensing","authors":"Gulfam Mushtaq ,&nbsp;V.V.R. Sai ,&nbsp;Sulalit Bandyopadhyay","doi":"10.1016/j.sbsr.2025.100869","DOIUrl":"10.1016/j.sbsr.2025.100869","url":null,"abstract":"<div><div>The applicability of gold nanoparticles with optical fibers has emerged as a promising approach for developing compact and sensitive biosensors. Among these nanostructures, gold nanorods (AuNRs) offer distinct advantages due to their localized surface plasmon resonance properties. While previous studies have demonstrated immobilization of AuNRs on optical fibers for sensing applications, challenges remain in achieving stable, consistent, and aggregation-free attachment of AuNRs. In this work, we present a systematic study to synthesize, functionalize, and chemisorb AuNRs onto amine-functionalized U-bent optical fibers.</div><div>To address the issue of particle aggregation and inconsistent attachment, we performed an extensive study on the effect of varying concentrations of EDC/NHS coupling agents. The optimized conditions significantly improved chemisorption consistency and minimized aggregation. The plasmonic behaviour of the immobilized AuNRs was characterized under varying refractive indices. The transverse surface plasmon resonance (TSPR) exhibited a bulk refractive index sensitivity of 7 ∆Abs/RIU. The measurement was performed at a particle concentration of 0.2 OD. In contrast, the longitudinal surface plasmon resonance (LSPR) peak position showed sensitivity to the microenvironment, demonstrated a consistent shift with increasing concentrations of Polymyxin B, reaching a maximum shift of 1.4 % at 20 μM. These results bridge the gap between AuNRs functionalization and reliable sensor chemisorption and highlight the potential of this platform for biosensing applications in medical diagnostics and environmental monitoring.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"50 ","pages":"Article 100869"},"PeriodicalIF":4.9,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145020479","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nano sensing of captopril, atenolol and sildenafil citrate based on Gemifloxacin/Bergenin coated silver nanoparticles using multivariate method 基于吉氟沙星/甜菜根素包被纳米银的卡托普利、阿替洛尔和枸橼酸西地那非的多变量传感方法
IF 4.9
Sensing and Bio-Sensing Research Pub Date : 2025-09-03 DOI: 10.1016/j.sbsr.2025.100870
Roqaiya Al Amri , Saima Farooq , Ajmal Khan , Magda H. Abdellattif , Alaa Abu Alnjaa , Fazal Mabood , Ahmed Al Harrasi , Javid Hussain
{"title":"Nano sensing of captopril, atenolol and sildenafil citrate based on Gemifloxacin/Bergenin coated silver nanoparticles using multivariate method","authors":"Roqaiya Al Amri ,&nbsp;Saima Farooq ,&nbsp;Ajmal Khan ,&nbsp;Magda H. Abdellattif ,&nbsp;Alaa Abu Alnjaa ,&nbsp;Fazal Mabood ,&nbsp;Ahmed Al Harrasi ,&nbsp;Javid Hussain","doi":"10.1016/j.sbsr.2025.100870","DOIUrl":"10.1016/j.sbsr.2025.100870","url":null,"abstract":"<div><div>Nano sensing is an advanced analysis approach for drug detection and delivery, rendering simplicity and effectiveness in a wide range of applications. In this study, silver nanoparticles (Ag-NPs) were coupled with Gemifloxacin and Bergenin to detect three drugs namely, Captopril, Atenolol, and Sildenafil Citrate. The formation and stability of drug-conjugated nanoparticles were explored under physiological conditions and were evaluated using surface plasmon resonance-based UV–Vis analysis. The as-obtained spectral data was analyzed through Partial Least Square Discriminate Analysis (PLS-DA) and Principal Component Analysis (PCA) multivariate methods.</div><div>The formation of Ag-NP was primarily confirmed through a vivid color observation, which was later tested by UV–Vis Spectrum analysis. Further experiments aimed at optimizing experimental conditions determining the ideal metal/drug ratios for AgNPs-Gemifloxacin and AgNPs-Bergenin conjugates. pH studies revealed the best absorbance was achieved at pH 6–7, while a brine effect investigation indicated that 3 M NaCl was the optimal concentration for absorbance.</div><div>Multivariate methods successfully differentiated the drugs with and without nanoparticles, with Gemifloxacin and Bergenin playing crucial roles. Importantly, adding these compounds didn't affect nanoparticle properties but enhanced their drug-detecting capabilities, offering a fast, simple, and effective approach with minimal impact on drug concentration or nanoparticle characteristics. These findings hold promise for drug delivery and biosensing advancements.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"50 ","pages":"Article 100870"},"PeriodicalIF":4.9,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145005078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信