A highly sensitive and selective one-dimensional Ag@hydrogen-bonded organic framework-based biosensor for the detection of the prohibited food additive ractopamine
{"title":"A highly sensitive and selective one-dimensional Ag@hydrogen-bonded organic framework-based biosensor for the detection of the prohibited food additive ractopamine","authors":"Mahmoud Roushani , Fatemeh Hamdi , Azam Zare Asadabadi , S. Jafar Hoseini","doi":"10.1016/j.sbsr.2025.100883","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a novel and highly responsive biosensor was engineered for the identification of ractopamine (RAC), an illicit additive used to stimulate muscle development in farm animals. A hydrogen-bonded organic framework (HOF) was synthesized via a simple, economical, and environmentally friendly approach. To reinforce the electrochemical performance, silver nanoparticles (Ag NPs) were integrated into the HOF, thereby enlarging the electrode's active surface area and facilitating greater immobilization of RAC-specific aptamers (Apt). The successful immobilization of Apt RAC on the Ag@HOF-coated glassy carbon electrode (GCE) was validated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). This sensing platform displayed a wide linear detection range from 0.01 fM - 0.25 nM, with an outstanding detection limit of 4 aM. Furthermore, the sensor demonstrated excellent specificity against potential interfering agents. Its reliable performance was also confirmed in complex biological samples, including milk and meat, indicating strong potential for practical, real-world applications.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"50 ","pages":"Article 100883"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180425001497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a novel and highly responsive biosensor was engineered for the identification of ractopamine (RAC), an illicit additive used to stimulate muscle development in farm animals. A hydrogen-bonded organic framework (HOF) was synthesized via a simple, economical, and environmentally friendly approach. To reinforce the electrochemical performance, silver nanoparticles (Ag NPs) were integrated into the HOF, thereby enlarging the electrode's active surface area and facilitating greater immobilization of RAC-specific aptamers (Apt). The successful immobilization of Apt RAC on the Ag@HOF-coated glassy carbon electrode (GCE) was validated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). This sensing platform displayed a wide linear detection range from 0.01 fM - 0.25 nM, with an outstanding detection limit of 4 aM. Furthermore, the sensor demonstrated excellent specificity against potential interfering agents. Its reliable performance was also confirmed in complex biological samples, including milk and meat, indicating strong potential for practical, real-world applications.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.