The role of S100B protein as a diagnostic biomarker for brain injury

IF 4.9 Q1 CHEMISTRY, ANALYTICAL
Nataliia Gnyliukh , James Wei , Winfried Neuhaus , Rabah Boukherroub , Sabine Szunerits
{"title":"The role of S100B protein as a diagnostic biomarker for brain injury","authors":"Nataliia Gnyliukh ,&nbsp;James Wei ,&nbsp;Winfried Neuhaus ,&nbsp;Rabah Boukherroub ,&nbsp;Sabine Szunerits","doi":"10.1016/j.sbsr.2025.100888","DOIUrl":null,"url":null,"abstract":"<div><div>S100B is a brain protein, produced mainly by astrocytes, that indicates neurological injury by leaking into the bloodstream, cerebrospinal fluid (CSF), and urine. Elevated levels of S100B in blood and CSF serve as a marker for acute neural injury such as traumatic brain injury (TBI) and stroke. The extent of S100B elevation can help predict clinical outcomes after brain injury and monitor the effectiveness of treatment. Measuring S100B levels over time, or using a trajectory analysis, can provide more reliable information about injury progression and help predict secondary injuries. In order to predict clinical outcomes after brain injury, as well as to provide a basis for appropriate treatment and indicate treatment success, it is imperative to have appropriate analytical tools at hand. In this review, we focus on the research progress of S100B as an “alert” signalling molecule in the connection of brain injuries and critically assess current diagnostic assays for S100B, including Enzyme-Linked Immunosorbent Assay (ELISA) kits, biosensors, and point-of-care (PoC) devices.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"50 ","pages":"Article 100888"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180425001540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

S100B is a brain protein, produced mainly by astrocytes, that indicates neurological injury by leaking into the bloodstream, cerebrospinal fluid (CSF), and urine. Elevated levels of S100B in blood and CSF serve as a marker for acute neural injury such as traumatic brain injury (TBI) and stroke. The extent of S100B elevation can help predict clinical outcomes after brain injury and monitor the effectiveness of treatment. Measuring S100B levels over time, or using a trajectory analysis, can provide more reliable information about injury progression and help predict secondary injuries. In order to predict clinical outcomes after brain injury, as well as to provide a basis for appropriate treatment and indicate treatment success, it is imperative to have appropriate analytical tools at hand. In this review, we focus on the research progress of S100B as an “alert” signalling molecule in the connection of brain injuries and critically assess current diagnostic assays for S100B, including Enzyme-Linked Immunosorbent Assay (ELISA) kits, biosensors, and point-of-care (PoC) devices.
S100B蛋白作为脑损伤诊断生物标志物的作用
S100B是一种主要由星形胶质细胞产生的脑蛋白,通过渗漏到血液、脑脊液和尿液中提示神经损伤。血液和脑脊液中S100B水平升高是急性神经损伤(如创伤性脑损伤(TBI)和中风)的标志。S100B升高的程度有助于预测脑损伤后的临床结局,监测治疗效果。随着时间的推移测量S100B水平,或使用轨迹分析,可以提供更可靠的损伤进展信息,并有助于预测继发性损伤。为了预测脑损伤后的临床结果,为适当的治疗提供依据,并提示治疗成功,掌握合适的分析工具是非常必要的。在这篇综述中,我们重点介绍了S100B作为脑损伤相关“警报”信号分子的研究进展,并批判性地评估了目前S100B的诊断方法,包括酶联免疫吸附试验(ELISA)试剂盒、生物传感器和护理点(PoC)设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensing and Bio-Sensing Research
Sensing and Bio-Sensing Research Engineering-Electrical and Electronic Engineering
CiteScore
10.70
自引率
3.80%
发文量
68
审稿时长
87 days
期刊介绍: Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies. The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信