Surface-engineered chitosan-coated MIL-53(Fe) nanozyme with synergistic effect on peroxidase/oxidase mimic as a highly sensitive biosensor for the colorimetric detection of hydrogen peroxide
{"title":"Surface-engineered chitosan-coated MIL-53(Fe) nanozyme with synergistic effect on peroxidase/oxidase mimic as a highly sensitive biosensor for the colorimetric detection of hydrogen peroxide","authors":"Parisa Bahmani, Majid Moghadam, Shahram Tangestaninejad, Iraj Mohammadpoor-Baltork, Vahideh Asadi, Valiollah Mirkhani","doi":"10.1016/j.sbsr.2025.100879","DOIUrl":null,"url":null,"abstract":"<div><div>The iron-based metal-organic framework (MOF) MIL-53(Fe) was successfully functionalized with chitosan through a simple and efficient post-synthetic strategy. This facile modification significantly enhances its catalytic properties, yielding a multifunctional nanocomposite that mimics both peroxidase and oxidase enzymatic activities. The chitosan-coated MIL-53(Fe), an inexpensive and biocompatible material, exhibits superior peroxidase-mimetic catalytic activity compared to its unmodified counterpart, enabling highly sensitive colorimetric biosensing. Upon interaction with hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), the nanocomposite facilitates the catalytic oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB), producing a deep blue solution with distinct UV–vis absorption peaks at 369 and 652 nm. This system demonstrates a detection limit of 0.3 μM. Furthermore, our optimized catalytic conditions (40 °C, pH 4.0, 10 min, catalyst concentration: 0.11 mg mL<sup>−1</sup>) underscore the remarkable efficiency of our MOF-based peroxidase mimic. Notably, both peroxidase and oxidase activities are seamlessly executed under identical reaction conditions, simplifying multi-step enzymatic processes and eliminating the need for separate optimization protocols. This unique feature enhances overall efficiency while significantly reducing operational costs. The intrinsic rapid catalytic kinetics, reflected in the high <em>V</em><sub><em>max</em></sub> values of 147.77 × 10<sup>−8</sup> Ms.<sup>−1</sup> for H<sub>2</sub>O<sub>2</sub> and 53.11 × 10<sup>−8</sup> Ms.<sup>−1</sup> for TMB, further reinforce the system's viability for real-time sensing applications. Our functionalized MIL-53(Fe) nanocomposite presents a groundbreaking advancement in MOF-based biomimetic catalysis, with high sensitivity, operational simplicity, and cost-effectiveness. Finally, due to the excellent catalytic activity of chitosan-coated MIL-53(Fe), it was successfully utilized to detect H<sub>2</sub>O<sub>2</sub> in real samples, including tap water and well water.</div></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"50 ","pages":"Article 100879"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221418042500145X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The iron-based metal-organic framework (MOF) MIL-53(Fe) was successfully functionalized with chitosan through a simple and efficient post-synthetic strategy. This facile modification significantly enhances its catalytic properties, yielding a multifunctional nanocomposite that mimics both peroxidase and oxidase enzymatic activities. The chitosan-coated MIL-53(Fe), an inexpensive and biocompatible material, exhibits superior peroxidase-mimetic catalytic activity compared to its unmodified counterpart, enabling highly sensitive colorimetric biosensing. Upon interaction with hydrogen peroxide (H2O2), the nanocomposite facilitates the catalytic oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB), producing a deep blue solution with distinct UV–vis absorption peaks at 369 and 652 nm. This system demonstrates a detection limit of 0.3 μM. Furthermore, our optimized catalytic conditions (40 °C, pH 4.0, 10 min, catalyst concentration: 0.11 mg mL−1) underscore the remarkable efficiency of our MOF-based peroxidase mimic. Notably, both peroxidase and oxidase activities are seamlessly executed under identical reaction conditions, simplifying multi-step enzymatic processes and eliminating the need for separate optimization protocols. This unique feature enhances overall efficiency while significantly reducing operational costs. The intrinsic rapid catalytic kinetics, reflected in the high Vmax values of 147.77 × 10−8 Ms.−1 for H2O2 and 53.11 × 10−8 Ms.−1 for TMB, further reinforce the system's viability for real-time sensing applications. Our functionalized MIL-53(Fe) nanocomposite presents a groundbreaking advancement in MOF-based biomimetic catalysis, with high sensitivity, operational simplicity, and cost-effectiveness. Finally, due to the excellent catalytic activity of chitosan-coated MIL-53(Fe), it was successfully utilized to detect H2O2 in real samples, including tap water and well water.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.