Micro and Nano Engineering最新文献

筛选
英文 中文
Characterization of negative tone photoresist mr-EBL 6000.5 for i-line stepper and electron beam lithography for the Intra-Level Mix & Match Approach 用于 i 线步进和电子束光刻的负调光刻胶 mr-EBL 6000.5 在级内混合与匹配方法中的特性分析
Micro and Nano Engineering Pub Date : 2024-06-01 DOI: 10.1016/j.mne.2024.100264
S. Schermer , C. Helke , M. Reinhardt , S. Hartmann , F. Tank , J. Wecker , G. Heldt , A. Voigt , D. Reuter
{"title":"Characterization of negative tone photoresist mr-EBL 6000.5 for i-line stepper and electron beam lithography for the Intra-Level Mix & Match Approach","authors":"S. Schermer ,&nbsp;C. Helke ,&nbsp;M. Reinhardt ,&nbsp;S. Hartmann ,&nbsp;F. Tank ,&nbsp;J. Wecker ,&nbsp;G. Heldt ,&nbsp;A. Voigt ,&nbsp;D. Reuter","doi":"10.1016/j.mne.2024.100264","DOIUrl":"https://doi.org/10.1016/j.mne.2024.100264","url":null,"abstract":"<div><p>In this paper the characterization of the mr-EBL 6000.5, which is an epoxy resin based chemically amplified negative tone resist from micro resist technology (Germany, Berlin) for an Intra-Level Mix &amp; Match (ILM&amp;M) approach is presented. The ILM&amp;M approach combined at least two exposure technologies on the same resist layer showing the advantage to resolve patterns of different dimensions with less process steps and short processing time. Since the mr-EBL 6000.5 resist is capable of being sensitive to both electron- and UV-radiation, process parameters for i-line stepper lithography and electron beam lithography (EBL) needs to be investigated to be capable for the ILM&amp;M approach. First, a spin curve and a post exposure bake (PEB) study were applied to find suitable process parameters for both exposure technologies. Furthermore, the minimum feature sizes for both patterning technologies are investigated by using a 500 nm thick resist layer. The impact of small feature sizes near the CD-limit of the used i-line stepper (350 nm) on the resist thickness after the development was investigated in dependence of the PEB. After all parameters were examined, they were combined to be used in the ILM&amp;M.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100264"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000273/pdfft?md5=6a411c15c7ee2b83289af726138f3e65&pid=1-s2.0-S2590007224000273-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141244517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Continued dimensional scaling through projection lithography 通过投影光刻技术继续扩大尺寸
Micro and Nano Engineering Pub Date : 2024-06-01 DOI: 10.1016/j.mne.2024.100263
Kurt Ronse
{"title":"Continued dimensional scaling through projection lithography","authors":"Kurt Ronse","doi":"10.1016/j.mne.2024.100263","DOIUrl":"https://doi.org/10.1016/j.mne.2024.100263","url":null,"abstract":"<div><p>This article discusses the important role that optical lithography has played in realizing Moore's Law. With the introduction of Artificial Intelligence, Machine Learning, and the Internet of Things, the demand for computing power and data storage capacity has never been as large as today. Optical lithography has been able to keep up with the resolution demand by increasing the Numerical Aperture of the projection Lens, decreasing the wavelength and innovative resist schemes. After the introduction of Immersion lithography and Double patterning, EUV was introduced by the industry. Although the transition from 193 nm lithography to EUV lithography was very difficult, EUV follows the same scaling laws as Optical Lithography. The conclusion is that the scaling laws of Optical Lithography continue to support Moore's Law, through the development of high NA EUV Lithography.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100263"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000261/pdfft?md5=c38b058810cf2d8f400b4d14687ef579&pid=1-s2.0-S2590007224000261-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141244516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of switchable biocompatible, nano-fluidic devices using a thermoresponsive polymer on nano-patterned surfaces 在纳米图案表面使用热致伸缩聚合物制造可切换的生物兼容纳米流体设备
Micro and Nano Engineering Pub Date : 2024-05-27 DOI: 10.1016/j.mne.2024.100265
Ch. Bickmann , Ch. Meinecke , T. Korten , H. Sekulla , Ch. Helke , Th. Blaudeck , D. Reuter , St. E. Schulz
{"title":"Fabrication of switchable biocompatible, nano-fluidic devices using a thermoresponsive polymer on nano-patterned surfaces","authors":"Ch. Bickmann ,&nbsp;Ch. Meinecke ,&nbsp;T. Korten ,&nbsp;H. Sekulla ,&nbsp;Ch. Helke ,&nbsp;Th. Blaudeck ,&nbsp;D. Reuter ,&nbsp;St. E. Schulz","doi":"10.1016/j.mne.2024.100265","DOIUrl":"https://doi.org/10.1016/j.mne.2024.100265","url":null,"abstract":"<div><p>In this study, a method for depositing and patterning the thermosensitive polymer poly(<em>N</em>-isopropylacrylamide) on SiO<sub>2</sub> surfaces is presented for potential use in nano-sized microfluidic channels. Two approaches based on nanolithographic processes are shown for this purpose. In both cases, a self-assembling monolayer consisting of (3-aminopropyl)-dimethylethoxysilane was bound to the hydroxyl group of the substrate surface and subsequently functionalized with the polymerization initiator α-bromoisobutyryl bromide. In the first approach the silane monolayer itself was patterned using a photoresist and a lift-off process, followed by the selective deposition of the initiator, which starts a substrate-induced atom transfer radical polymerization for the growth of polymer on the silane monolayer. In the second approach, the lift-off takes place after the polymerization on the substrate surface. The result of this study shows the successful application of the process steps for the nano-dimensioned grafting of poly(<em>N</em>-isopropylacrylamide) onto SiO<sub>2</sub> substrates. The reaction time of the silane monolayer with the polymerization initiator and the composition of the reaction solution used were found to have the greatest influence of the processes. AFM and XPS analysis of the functionalized surfaces revealed patterned growth of both the self-assembling monolayer and the polymer structures.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100265"},"PeriodicalIF":0.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000285/pdfft?md5=65d3de0b41fb5be31e5f4007dff14894&pid=1-s2.0-S2590007224000285-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141163943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent progress on gold nanoparticle biosensors monitored water quality: Insights on diversified contaminants and functionalization paradigms 监测水质的金纳米粒子生物传感器的最新进展:关于多样化污染物和功能化范例的见解
Micro and Nano Engineering Pub Date : 2024-05-18 DOI: 10.1016/j.mne.2024.100261
Parth Malik , Ruma Rani , Rachna Gupta , Rakesh Kumar Ameta , Tapan Kumar Mukherjee
{"title":"Recent progress on gold nanoparticle biosensors monitored water quality: Insights on diversified contaminants and functionalization paradigms","authors":"Parth Malik ,&nbsp;Ruma Rani ,&nbsp;Rachna Gupta ,&nbsp;Rakesh Kumar Ameta ,&nbsp;Tapan Kumar Mukherjee","doi":"10.1016/j.mne.2024.100261","DOIUrl":"https://doi.org/10.1016/j.mne.2024.100261","url":null,"abstract":"<div><p>Over the past few years, water quality monitoring has swiftly emerged as a thrust area for most of the developing nations. Despite its renewable essence, incessant industrialization and urbanization have depleted the natural water resources, culminating in adverse impact on potable water quality. As a consequence, reliable technologies with utmost sensitivity and accurate predictions <em>vis-à-vis</em> authentic qualitative standards are urgently needed. Herein, interest in using gold nanoparticles (Au NPs) biosensors to gauge the qualitative profile of water resources has been quite significant. Major fascinations for Au NPs biosensing driven water quality monitoring are steadfast preparation methodologies, well-understood mechanisms for size-shape modulation and inert sensitivity manifested remarkable functionalization abilities. The size-shape modulated functionalization advances for Au NPs are the dynamic outcomes of their quantum effects, anchored <em>via</em> single or multidimensional quantum confinements (QCs). Morphologies as vibrant as rod, spherical, cylindrical, shells and combinatorial regime have been the backbone aspects of Au NPs based biosensors. With such insights, the present article focuses on last decade noted advances aimed at Au NPs biosensors assessed water quality. The studies discussed herewith were retrieved from Pubmed using the keywords, “Gold Nanoparticle Biosensors for Water Quality Monitoring”. The knowledge shared herein could consolidate the fabrication of future Au nanomaterials based sensing technologies <em>vis-à-vis</em> functionalization mechanisms, cost considerations, precision aspects, integrated possibilities and long-term cautions.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100261"},"PeriodicalIF":0.0,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000248/pdfft?md5=035af649efca26b4d1459d91ee82964f&pid=1-s2.0-S2590007224000248-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141090183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Plasmonic metamaterial absorber for MWIR and LWIR bispectral microbolometers 用于中波红外和低波红外双谱微测辐射计的等离子超材料吸收器
Micro and Nano Engineering Pub Date : 2024-05-16 DOI: 10.1016/j.mne.2024.100262
Alexander Litke , Elahe Zakizade , Marvin Michel , Sascha Weyers , Anna Lena Schall-Giesecke
{"title":"Plasmonic metamaterial absorber for MWIR and LWIR bispectral microbolometers","authors":"Alexander Litke ,&nbsp;Elahe Zakizade ,&nbsp;Marvin Michel ,&nbsp;Sascha Weyers ,&nbsp;Anna Lena Schall-Giesecke","doi":"10.1016/j.mne.2024.100262","DOIUrl":"10.1016/j.mne.2024.100262","url":null,"abstract":"<div><p>Plasmonic metamaterial absorbers (PMAs) designed for multispectral imaging in the infrared (IR) with uncooled microbolometers are investigated. The study presents Fourier transform infrared spectroscopy (FTIR) measurements of PMAs consisting of metal-insulator-metal-stacks (MIM) with square-shaped micropatches as top metal layers. The measurements reveal high absorptances of 82% to 99% for distinct wavelengths within a range from 2 μm to 9.2 μm. The spectra are evaluated with respect to the lateral dimensions of the patches and to the refractive indices of the used dielectrics SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub> and Ta<sub>2</sub>O<sub>5</sub>. Numerical simulations and analytical calculations of the TM<sub>010</sub>-mode using the transmission line model (TLM) for microstrip antennas show good qualitative agreement with the measurement results. Additionally, bispectral PMAs were fabricated consisting of fields of PMAs with two different patch sizes arranged in a chessboard pattern. The individual fields of this pattern correspond to microbolometers with 12 μm pitch in shape and size. Two distinct absorption maxima can be seen in the spectra measured by FTIR. The choice of materials, deposition methods and patterning processes is suitable for the integration into the existing Fraunhofer IMS's nanotube microbolometer technology to realize multispectral infrared imaging. The fabrication process is CMOS-compatible and carried out on 8-in. wafers.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100262"},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259000722400025X/pdfft?md5=f4203714dbb897b05b563c1db386a14d&pid=1-s2.0-S259000722400025X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141024538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of hydrothermally-produced ZnO nanorods and the mechanisms of Li incorporation as a possible dopant 研究水热法生产的氧化锌纳米棒以及锂作为一种可能的掺杂剂的掺入机理
Micro and Nano Engineering Pub Date : 2024-05-15 DOI: 10.1016/j.mne.2024.100260
Georgios P. Papageorgiou , Nikolaos Boukos , Maria Androulidaki , Dimitrios Christofilos , Vassilis Psycharis , Maria Katsikini , Fani Pinakidou , Eleni C. Paloura , Christoforos Krontiras , Eleni Makarona
{"title":"Investigation of hydrothermally-produced ZnO nanorods and the mechanisms of Li incorporation as a possible dopant","authors":"Georgios P. Papageorgiou ,&nbsp;Nikolaos Boukos ,&nbsp;Maria Androulidaki ,&nbsp;Dimitrios Christofilos ,&nbsp;Vassilis Psycharis ,&nbsp;Maria Katsikini ,&nbsp;Fani Pinakidou ,&nbsp;Eleni C. Paloura ,&nbsp;Christoforos Krontiras ,&nbsp;Eleni Makarona","doi":"10.1016/j.mne.2024.100260","DOIUrl":"https://doi.org/10.1016/j.mne.2024.100260","url":null,"abstract":"<div><p>Zinc oxide (ZnO) has emerged as one of the most promising candidates for mass-producing cost-efficient optoelectronic devices. This is primarily because it can be synthesized in high-quality nanostructures on a wide range of substrates through relatively simple chemical methods. However, producing p-type ZnO, regardless of the chosen method, remains an open and controversial issue. In this work, Li-doped ZnO nanostructures of varying Li-cocnentration were produced via a two-step hydrothermal growth synthesis and an in-depth analysis based on with Field Emission Scanning Electron Microscopy (FE-SEM), X-ray diffraction (XRD), Raman Spectroscopy, Extended X-Ray Absorption Fine Structure (EXAFS) Spectroscopy, and temperature-dependent Photoluminescence (PL) was carried out in an effort to gain insights into the Li-incorporation mechanisms. The findings indicated a strong interplay between the native defects responsible for the inherent n-type character of the material and Li incorporation. It is suggested that this interplay hinders the successful conversion of the Li-doped nanorods into p-type nanostructures and that when employing the hydrothermal approach it is essential to identify the precise conditions necessary for genuine Li incorporation as a Zn substitutional.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100260"},"PeriodicalIF":0.0,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000236/pdfft?md5=9550786a76dde3a2bafc733a00d2da47&pid=1-s2.0-S2590007224000236-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141067393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanophotonic integrated active-passive InP membrane devices and circuits fabricated using ArF scanner lithography 利用 ArF 扫描光刻技术制造的纳米光子集成有源-无源 InP 膜器件和电路
Micro and Nano Engineering Pub Date : 2024-05-13 DOI: 10.1016/j.mne.2024.100258
Aleksandr Zozulia , Jeroen Bolk , Rene van Veldhoven , Gleb Nazarikov , Vadim Pogoretskiy , Samir Rihani , Graham Berry , Kevin Williams , Yuqing Jiao
{"title":"Nanophotonic integrated active-passive InP membrane devices and circuits fabricated using ArF scanner lithography","authors":"Aleksandr Zozulia ,&nbsp;Jeroen Bolk ,&nbsp;Rene van Veldhoven ,&nbsp;Gleb Nazarikov ,&nbsp;Vadim Pogoretskiy ,&nbsp;Samir Rihani ,&nbsp;Graham Berry ,&nbsp;Kevin Williams ,&nbsp;Yuqing Jiao","doi":"10.1016/j.mne.2024.100258","DOIUrl":"https://doi.org/10.1016/j.mne.2024.100258","url":null,"abstract":"<div><p>We present a novel fabrication approach to an integrated nanophotonic platform, based on a III-V membrane bonded to a Si substrate with benzocyclobutene (BCB). The process incorporates a hybrid lithography strategy combining deep-UV and electron-beam lithography on the same wafer. We report for the first time the usage of deep-UV scanner lithography for the fabrication of the active-passive tapers and sub-micron waveguides on the same wafer, which enables better critical dimension control, uniformity, and reproducibility. The platform uses an active-passive butt-joint interface and includes components such as distributed feedback (DFB) and distributed Bragg reflector (DBR) lasers, electro-optical (EO) and electro-absorption (EA) modulators, and sub-micron ultra-confined passive waveguides, all monolithically integrated into a single membrane layer. The active devices have a heat sink achieved by ultra-thin BCB bonding. Lasers demonstrate up to 26 mW of optical power in the waveguide and a direct modulation bandwidth of up to 21 GHz. The modulators show static extinction up to 28.8 dB.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100258"},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000212/pdfft?md5=d5fd93e8bf263fb4464f4415b20d46ae&pid=1-s2.0-S2590007224000212-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140951304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-sectional geometry effect on bending strength of gold micro-cantilever with trapezoidal cross-section 横截面几何形状对梯形截面金微型悬臂弯曲强度的影响
Micro and Nano Engineering Pub Date : 2024-05-11 DOI: 10.1016/j.mne.2024.100259
Ryohei Hori , Kazuya Fujita , Chun Yi Chen , Tomoyuki Kurioka , Jhen-Yang Wu , Tso-Fu Mark Chang , Katsuyuki Machida , Hiroyuki Ito , Yoshihiro Miyake , Masato Sone
{"title":"Cross-sectional geometry effect on bending strength of gold micro-cantilever with trapezoidal cross-section","authors":"Ryohei Hori ,&nbsp;Kazuya Fujita ,&nbsp;Chun Yi Chen ,&nbsp;Tomoyuki Kurioka ,&nbsp;Jhen-Yang Wu ,&nbsp;Tso-Fu Mark Chang ,&nbsp;Katsuyuki Machida ,&nbsp;Hiroyuki Ito ,&nbsp;Yoshihiro Miyake ,&nbsp;Masato Sone","doi":"10.1016/j.mne.2024.100259","DOIUrl":"https://doi.org/10.1016/j.mne.2024.100259","url":null,"abstract":"<div><p>Gold is a promising material for movable components in MEMS devices by the high mass density, which allows reduction of the Brownian noise. Mechanical properties of metallic materials are known to be affected by the sample size effect. When bending test is utilized, the sample geometry effect is another factor. In this study, effects of the shape of the cross-section, or the cross-sectional geometry effect, are evaluated using micro-cantilevers with a trapezoidal cross-section. The yield stresses are ranged from 112 MPa to 185 MPa in micro-cantilevers composed of single crystalline gold, and the yield stresses varied from 372 MPa to 489 MPa in polycrystalline gold micro-cantilevers. The yield stress is found to be higher in the micro-cantilever having a smaller ratio of the top width over the bottom width, which demonstrates the cross-sectional geometry effect. Also, the cross-sectional geometry effect is more significant in the polycrystalline micro-cantilevers.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100259"},"PeriodicalIF":0.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000224/pdfft?md5=c975d3baea9813e31a1d20e50884ceb8&pid=1-s2.0-S2590007224000224-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140951303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of pyrolytic carbon interdigitated microelectrodes by maskless UV photolithography with epoxy-based photoresists SU-8 and mr-DWL 利用环氧基光刻胶 SU-8 和 mr-DWL,通过无掩模紫外光刻技术制造热解碳插接微电极
Micro and Nano Engineering Pub Date : 2024-05-08 DOI: 10.1016/j.mne.2024.100257
Nicolai Støvring , Babak Rezaei , Arto Heiskanen , Jenny Emnéus , Stephan Sylvest Keller
{"title":"Fabrication of pyrolytic carbon interdigitated microelectrodes by maskless UV photolithography with epoxy-based photoresists SU-8 and mr-DWL","authors":"Nicolai Støvring ,&nbsp;Babak Rezaei ,&nbsp;Arto Heiskanen ,&nbsp;Jenny Emnéus ,&nbsp;Stephan Sylvest Keller","doi":"10.1016/j.mne.2024.100257","DOIUrl":"10.1016/j.mne.2024.100257","url":null,"abstract":"<div><p>Maskless UV photolithography is increasingly used, especially in research environments where low turn-around time for new designs improves productivity. Here, we fabricate pyrolytic carbon interdigitated microelectrodes with small interelectrode gaps, good adhesion to the carrier substrate, high surface area and excellent electrochemical properties using maskless UV photolithography with two negative epoxy-based photoresists, namely the commonly used SU-8 and the recently developed mr-DWL. The minimum realizable trench width in 15 μm thick photoresist films is 2.4 ± 0.15 μm for mr-DWL 5 and 3.1 ± 0.10 μm for SU-8 2035. After pyrolysis, the two resulting pyrolytic carbon materials show similar electrochemical properties. However, shrinkage during pyrolysis is significantly lower for mr-DWL compared to SU-8, which is beneficial for the fabrication of interdigitated microelectrodes. Furthermore, delamination of the electrodes during processing and operation is prevented due to the introduction of poly silicon adhesion structures. This work provides valuable insights into maskless UV lithography as well as into the pyrolytic carbon process to increase the yield, performance and productivity for fabrication of microelectrodes.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100257"},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000200/pdfft?md5=60673ebe8420e6820b9903f3d1fe7dce&pid=1-s2.0-S2590007224000200-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141049018","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlled wettability of biphilic patterned surfaces for enhanced atmospheric water harvesting 控制双亲图案表面的润湿性,增强大气集水能力
Micro and Nano Engineering Pub Date : 2024-04-30 DOI: 10.1016/j.mne.2024.100255
Joyce Estephan, Marie Panabière, Camille Petit-Etienne, Sebastien Labau, Léo Bon, Jean-Hervé Tortai, Cécile Gourgon
{"title":"Controlled wettability of biphilic patterned surfaces for enhanced atmospheric water harvesting","authors":"Joyce Estephan,&nbsp;Marie Panabière,&nbsp;Camille Petit-Etienne,&nbsp;Sebastien Labau,&nbsp;Léo Bon,&nbsp;Jean-Hervé Tortai,&nbsp;Cécile Gourgon","doi":"10.1016/j.mne.2024.100255","DOIUrl":"https://doi.org/10.1016/j.mne.2024.100255","url":null,"abstract":"<div><p>Water is a vital component for all living organisms, yet persistent water scarcity remains a global challenge. One potential solution lies in replicating the atmospheric water collection mechanism observed in the Stenocara beetle, characterized by a dorsal surface featuring alternating hydrophilic and hydrophobic regions. In this study, we have designed and examined two distinct biphilic patterned surface configurations, integrating various technologies, to mimic the beetle's water collection strategy. Our investigation evaluates the efficiency of these surfaces in both capturing water from fog and condensing water from dew. For fog collection two parameters were the most impactful: the roughness and the wettability contrast between hydrophilic and hydrophobic zones. In contrast, dew condensation was influenced by additional parameters notably the patterns' size and density that directly affect the water contact angle. It is worth noting, however, that the optimal surface for fog collection may not necessarily coincide with the most effective surface for dew condensation. Furthermore, our research includes a comparative analysis between the theoretically predicted volume of water droplet departure and the empirically observed results.</p></div>","PeriodicalId":37111,"journal":{"name":"Micro and Nano Engineering","volume":"23 ","pages":"Article 100255"},"PeriodicalIF":0.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590007224000182/pdfft?md5=ceffce399788bdc2ff24b6d2f8ce8bee&pid=1-s2.0-S2590007224000182-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140844409","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信