{"title":"A pH-Sensitive Smart Monomer Prevents Oral Cancer Progression","authors":"Shiyu Liu, Jing Chen, Xuedong Zhou, Yu Hao, Yawen Zong, Yangyang Shi, Xiao Guo, Qi Han, Mingyun Li, Bolei Li, Lei Cheng","doi":"10.1002/anbr.202470041","DOIUrl":"https://doi.org/10.1002/anbr.202470041","url":null,"abstract":"<p><b>Cancer Treatment</b>\u0000 </p><p>Oral cancer shows an acidic tumor microenvironment. A pH-sensitive tertiary amine monomer dodecylmethylaminoethyl methacrylate (DMAEM) has been designed, which displays reversible protonation and deprotonation reactions according to the pH changes. In the acidic microenvironment DMAEM could be protonated into strong cytotoxic quaternary ammonium monomers - Dimethylaminododecyl methacrylate (DMADDM). By this means, DMAEM inhibits the progression of oral cancer. More details can be found in article number 2300119 by Bolei Li, Lei Cheng, and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 4","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202470041","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140544481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yile Zheng, Yi Wei, Yuying Yang, Xiang Wen, Cai Yang, Yating Xiao, Zhen Du, Xiangsheng Liu
{"title":"Development of Manganese Carbonyl Loaded Upconversion Nanoparticles for Near-Infrared-Triggered Carbon Monoxide and Mn2+ Delivery","authors":"Yile Zheng, Yi Wei, Yuying Yang, Xiang Wen, Cai Yang, Yating Xiao, Zhen Du, Xiangsheng Liu","doi":"10.1002/anbr.202300171","DOIUrl":"10.1002/anbr.202300171","url":null,"abstract":"<p>Photoactivatable carbon monoxide-releasing molecules (CORMs), typically based on transition-metal carbonyl complexes, have reliance on activation by UV or visible light that restricts their biomedical applications. To address this limitation, a near-infrared (NIR)-responsive nanoplatform is presented based on upconversion nanoparticles (UCNPs) loading with manganese carbonyl complex Mn<sub>2</sub>(CO)<sub>10</sub> that concurrently releases CO and manganese ion (Mn<sup>2+</sup>). With the UCNPs, the more tissue-penetrable NIR is used to locally generate UV light for photodecomposition of Mn<sub>2</sub>(CO)<sub>10</sub> into CO and manganese oxide (MnO<sub><i>X</i></sub>), after which MnO<sub><i>X</i></sub> is reduced to Mn<sup>2+</sup> by the overexpressed glutathione in cancer cells. Moreover, the released Mn<sup>2+</sup> can serve as a magnetic resonance imaging contrast agent to monitor the NIR-controlled corelease of CO and Mn<sup>2+</sup> in real time. Therefore, this nanoplatform can provide a potential strategy for NIR-enabled spatiotemporally release of CO and Mn<sup>2+</sup>, enhancing the controlled delivery and biomedical application of CORMs.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 8","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300171","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140718060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Liposomal Neostigmine Bromide: A Localized Therapeutic Approach for Detrusor Underactivity","authors":"Kunpeng Liu, Haitao Gong, Binbin Jiao, Zhenshan Ding, Jian Ren, Zhihua Gan, Qingsong Yu","doi":"10.1002/anbr.202300109","DOIUrl":"10.1002/anbr.202300109","url":null,"abstract":"<p>This study aims to evaluate the therapeutic potential of cationic liposomal neostigmine bromide (NB), a novel drug delivery system, for the treatment of detrusor underactivity. By comparing the characteristics of NB-liposomes (NLP), NB-β-cyclodextrin inclusion complex liposomes (NCLP), and NB-mesoporous silica nanoparticle@CaCO<sub>3</sub> liposomes (NMCLP), NMCLP is selected as the main research subject. It has an average particle size and zeta potential of 100 nm and +50 mV, and its encapsulation efficiency and loading capacity of NB are 14.75% and 12.8%, respectively. Most importantly, NMCLP shows the best in vitro release performance among the three liposomes, demonstrating its ability in sustained release of NB. During cell and animal assays, efficient cellular uptake of liposomes through liposome-specific pathways is observed, facilitating targeted drug delivery, and in vivo experiments demonstrate the efficacy of NMCLP in improving bladder function in mice. Urodynamic measurements show increased bladder capacity and reduced voiding pressure, indicating enhanced bladder muscle activity. Histological analysis reveals the distribution and deep penetration of NMCLP within bladder tissues, supporting its localized drug effect. Therefore, NMCLP holds promise as a targeted and effective therapeutic strategy for detrusor underactivity.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 7","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300109","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140747278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Marcos N. Barcellona, Tara Ní Néill, Fergal J. O’Brien, James E. Dixon, Caroline M. Curtin, Conor T. Buckley
{"title":"Modulation of Inflammation and Regeneration in the Intervertebral Disc Using Enhanced Cell-Penetrating Peptides for MicroRNA Delivery","authors":"Marcos N. Barcellona, Tara Ní Néill, Fergal J. O’Brien, James E. Dixon, Caroline M. Curtin, Conor T. Buckley","doi":"10.1002/anbr.202300112","DOIUrl":"https://doi.org/10.1002/anbr.202300112","url":null,"abstract":"<p>Back pain is a global epidemiological and socioeconomic problem affecting up to 80% of people at some stage during their life and is often due to degeneration of the intervertebral disc (IVD). Therapies aimed at restoring the intradiscal space have predominantly focused on delivery of biomaterials, cells, or growth factors, among others, with variable degrees of success. While viral gene delivery strategies have emerged as promising therapeutic options in recent years, these approaches often have off-target effects and are associated with immunogenicity risks and other comorbidities. Consequently, nonviral methods have gained traction as potential avenues for gene delivery. Herein, enhanced cell-penetrating peptide (CPP) systems are used to deliver microRNAs in an in vitro and ex vivo model of disc degeneration. The data suggest that nanoparticle complexation of CPPs with (miR-221-inhibitor + miR-149-mimic) promotes protective effects in nucleus pulposus cells challenged with inflammatory cytokines TNF-α and IL-1β. Specifically, increases in matrix deposition, significant decreases in the secretion of an array of inflammatory cytokines, and decreased expression of matrix degradation enzymes MMP13 and ADAMTS5 are observed. These miR-CPP nanocomplexes can be further employed for targeting of the pericellular matrix space through homing, thus providing a promising approach for therapies of the intradiscal space.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 7","pages":""},"PeriodicalIF":4.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300112","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141565735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Oxygen-Releasing Hydrogels for Tissue Regeneration","authors":"Shengxi Jiang, Yujia Zheng, Hao Xia, Zexin Liu, Shuquan Rao, Yingbo Wang, Hongyu Sun, Xiong Lu, Chaoming Xie","doi":"10.1002/anbr.202300133","DOIUrl":"https://doi.org/10.1002/anbr.202300133","url":null,"abstract":"<p>Hydrogels have emerged as a focal point of research in the biomedical field due to their applications in tissue repair. However, the majority of hydrogels lack the capability to release oxygen, constraining their therapeutic outcomes in environments with hypoxic tissues. In recent years, oxygen-releasing hydrogels have garnered extensive attention in the field of tissue engineering, owing to their ability to modulate oxygen release and meet the diverse oxygenation requirements of various tissues. These hydrogels can enhance repair efficiency and promote tissue regeneration in hypoxic tissue environments. The design of oxygen-releasing hydrogels primarily involves the utilization of diverse oxygen sources, such as algae, perfluorocarbons, and peroxides, to achieve optimal tissue oxygenation. This review provides a comprehensive summary of the design and fabrication strategies of oxygen-releasing hydrogels, discusses deeply into their underlying oxygen-releasing mechanisms, and their myriad applications in tissue repair along with the prospective challenges.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300133","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141292595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in Nanocarriers for Delivering Therapeutic Agents Against Hepatitis B Virus","authors":"Jia Li, Jianlan Yuan, Hugang Li, Jingyi Guo, Mingjun Li, Tingbin Zhang, Xing-Jie Liang, Haiming Fan, Xiaoli Liu","doi":"10.1002/anbr.202300132","DOIUrl":"10.1002/anbr.202300132","url":null,"abstract":"<p>Hepatitis B virus (HBV) infection is a crucial public health issue and a major cause of liver disease, such as cirrhosis and hepatocellular carcinoma. At present, orally administered small molecule drugs, such as nucleoside / nucleotide analogues, are recommended as the first-line treatment for HBV. However, the therapeutic efficacy of these drugs is hindered by off-target toxicity caused by the whole-body permeation distribution of these oral drugs. As an emerging drug delivery technology, systemically administered nanocarriers can enhance the aqueous solubility and stability of encapsulated drugs, prolong circulation times, and deliver them efficiently to the liver, showing great promise for increasing the safety and efficacy of small molecule drugs. Furthermore, nanocarriers also accelerate the clinical translation of new therapies, such as nucleic acids and vaccines. This review article highlights the progress of nanoparticle delivery systems in anti-HBV therapeutics and discusses the opportunities and challenges for the future development of anti-HBV nanotherapeutics.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300132","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140382169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Transdermal Delivery of Polymeric Nanoparticles Containing Aconite Root for the Treatment of Chemotherapy-Induced Peripheral Neuropathy","authors":"Tae Eon Park, Man-Suk Hwang, Ki Su Kim","doi":"10.1002/anbr.202400006","DOIUrl":"10.1002/anbr.202400006","url":null,"abstract":"<p>Chemotherapy-induced peripheral neuropathy (CIPN) poses challenges like pain and numbness, necessitating innovative treatments due to current limitations. Conventional approaches, relying on pain relief medications and dose adjustments, fall short in addressing neurotoxicity, resulting in inadequate pain relief and undesired effects. Aconite root (AR), a medicinal herb withcenturies of use against various diseases, contains a compound named Aconine, which alleviates pain by blocking specific neural channels. However, AR also contains Aconitine, a toxic substance hydrolyzed into nontoxic Aconine through heating. Herein, hyaluronate-poly(lactic<i>-co</i>-glycolic acid) nanoparticles (HA-PLGA/AR NPs) encapsulating Aconine are fabricated, enabling controlled release, protection, and transdermal delivery, enhancing therapeutic outcomes. High-performance liquid chromatography identifies optimal Aconine content after 48 h of AR boiling, with minimal neural toxicity confirmed. Characterization via transmission electron microscopy, dynamic light scattering, and in vitro assays demonstrates superior drug release by HA-PLGA/AR NPs, establishing effective transdermal Aconine delivery. In an in vitro CIPN model with paclitaxel (PTX)-treated PC12 cells, HA-PLGA/AR NPs stimulate enhanced neurite growth, validating their localized analgesic impact on CIPN and suggesting potential symptom alleviation. Taken together, HA-PLGA/AR NPs offer a promising strategy for controlled transdermal Aconine delivery, potentially alleviating CIPN and addressing various neuropathies and diseases.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400006","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140382872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hyperbaric Oxygen-Facilitated Cancer Treatment: A Minireview","authors":"Zi-Heng Li, Xinping Zhang, Fu-Gen Wu","doi":"10.1002/anbr.202300162","DOIUrl":"10.1002/anbr.202300162","url":null,"abstract":"<p>Hypoxia in malignant tumors is a major factor in inducing the failure of clinical cancer treatment. Although several strategies have been developed to relieve hypoxia, most are still in the preclinical research phase. Therefore, hyperbaric oxygen (HBO), an approved adjuvant therapy for alleviating hypoxia clinically, is an excellent choice for enhancing the efficacy of cancer treatment that is impeded by tumor hypoxia. In this minireview, recent advances in HBO-facilitated cancer treatment, including clinical applications and nanomedicine-mediated cancer therapy are introduced. At the end of this minireview, the potential challenges faced by HBO therapy before clinical use are discussed. It is hoped that this review will provide a reference for future clinical research on the application of HBO in cancer treatment.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 6","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300162","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140255459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advances in Pulmonary Protein Delivery Systems","authors":"Yuanyuan Zhao, Shuai Liu, Xueguang Lu","doi":"10.1002/anbr.202300176","DOIUrl":"10.1002/anbr.202300176","url":null,"abstract":"<p>Protein-based therapeutics and vaccines play a pivotal role in the realm of biomedical science. Pulmonary administration offers several advantages including rapid adsorption, non-invasive, increased local drug concentration, and bypassed first-pass metabolism, thus holding great potential to address multiple unmet medical needs in lung-related diseases and vaccination. However, the limited success of inhaled proteins in clinical settings highlights the challenges associated with protein stability and the physiological barriers within the respiratory system. To overcome these hurdles, a variety of delivery systems including polymers, liposomes, cell-derived membranes, and inorganic materials are developed to improve the stability, mucus penetration, retention time, and bioavailability of proteins. With the outbreak of COVID-19, the pulmonary administration of proteins has drawn great attention. In this review, the design principle, preparation, biomedical application, progress in clinical translation, advantages, and disadvantages of each kind of delivery system are summarized, with an emphasis on carrier materials.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300176","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140257252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diogo Volpati, Pedro H. B. Aoki, Therese B. Johansson, Roberto Munita, Frida Ekstrand, Sabrina Ruhrmann, Karl Bacos, Charlotte Ling, Christelle N. Prinz
{"title":"Monitoring the Intracellular Fate of Molecular Beacons: The Challenge of False Positive Signals","authors":"Diogo Volpati, Pedro H. B. Aoki, Therese B. Johansson, Roberto Munita, Frida Ekstrand, Sabrina Ruhrmann, Karl Bacos, Charlotte Ling, Christelle N. Prinz","doi":"10.1002/anbr.202300147","DOIUrl":"10.1002/anbr.202300147","url":null,"abstract":"<p>Molecular beacons (MBs) have been used on surfaces for detecting oligonucleotides. Attempts to use them intracellularly for monitoring mRNA content have been made, however, without any clear conclusion regarding the reliability of the method, mainly due to false positive signals. To reach an understanding of the intracellular fate of MBs, a critical question remains: how long after MB delivery and where in the cell does a false positive signal appear? To answer that question, the MB delivery method should allow for a time-stamped synchronized delivery of MBs to multiple cells, resulting in MBs being distributed in the cytosol immediately after delivery. Herein, nanostraws are used to inject MBs targeting insulin (<i>Ins1</i>) mRNA directly in the cytosol of clonal beta-cells, and the evolution of the MB fluorescence in time and space is monitored. The results show an MB translocation to the nucleus, where MBs are degraded or where they open nonspecifically, before the fluorophore alone is expelled back from the nucleus to the cytosol. The signal translocation to the nucleus and back to the cytosol is faster when scrambled MBs are used. The results shed light on the intracellular fate of MBs and highlight the short time scales before false positive signals become predominant.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 5","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300147","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140257390","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}