含乌头根的聚合物纳米粒子透皮给药用于治疗化疗引起的周围神经病变

IF 4 Q2 ENGINEERING, BIOMEDICAL
Tae Eon Park, Man-Suk Hwang, Ki Su Kim
{"title":"含乌头根的聚合物纳米粒子透皮给药用于治疗化疗引起的周围神经病变","authors":"Tae Eon Park,&nbsp;Man-Suk Hwang,&nbsp;Ki Su Kim","doi":"10.1002/anbr.202400006","DOIUrl":null,"url":null,"abstract":"<p>Chemotherapy-induced peripheral neuropathy (CIPN) poses challenges like pain and numbness, necessitating innovative treatments due to current limitations. Conventional approaches, relying on pain relief medications and dose adjustments, fall short in addressing neurotoxicity, resulting in inadequate pain relief and undesired effects. Aconite root (AR), a medicinal herb withcenturies of use against various diseases, contains a compound named Aconine, which alleviates pain by blocking specific neural channels. However, AR also contains Aconitine, a toxic substance hydrolyzed into nontoxic Aconine through heating. Herein, hyaluronate-poly(lactic<i>-co</i>-glycolic acid) nanoparticles (HA-PLGA/AR NPs) encapsulating Aconine are fabricated, enabling controlled release, protection, and transdermal delivery, enhancing therapeutic outcomes. High-performance liquid chromatography identifies optimal Aconine content after 48 h of AR boiling, with minimal neural toxicity confirmed. Characterization via transmission electron microscopy, dynamic light scattering, and in vitro assays demonstrates superior drug release by HA-PLGA/AR NPs, establishing effective transdermal Aconine delivery. In an in vitro CIPN model with paclitaxel (PTX)-treated PC12 cells, HA-PLGA/AR NPs stimulate enhanced neurite growth, validating their localized analgesic impact on CIPN and suggesting potential symptom alleviation. Taken together, HA-PLGA/AR NPs offer a promising strategy for controlled transdermal Aconine delivery, potentially alleviating CIPN and addressing various neuropathies and diseases.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 5","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400006","citationCount":"0","resultStr":"{\"title\":\"Transdermal Delivery of Polymeric Nanoparticles Containing Aconite Root for the Treatment of Chemotherapy-Induced Peripheral Neuropathy\",\"authors\":\"Tae Eon Park,&nbsp;Man-Suk Hwang,&nbsp;Ki Su Kim\",\"doi\":\"10.1002/anbr.202400006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chemotherapy-induced peripheral neuropathy (CIPN) poses challenges like pain and numbness, necessitating innovative treatments due to current limitations. Conventional approaches, relying on pain relief medications and dose adjustments, fall short in addressing neurotoxicity, resulting in inadequate pain relief and undesired effects. Aconite root (AR), a medicinal herb withcenturies of use against various diseases, contains a compound named Aconine, which alleviates pain by blocking specific neural channels. However, AR also contains Aconitine, a toxic substance hydrolyzed into nontoxic Aconine through heating. Herein, hyaluronate-poly(lactic<i>-co</i>-glycolic acid) nanoparticles (HA-PLGA/AR NPs) encapsulating Aconine are fabricated, enabling controlled release, protection, and transdermal delivery, enhancing therapeutic outcomes. High-performance liquid chromatography identifies optimal Aconine content after 48 h of AR boiling, with minimal neural toxicity confirmed. Characterization via transmission electron microscopy, dynamic light scattering, and in vitro assays demonstrates superior drug release by HA-PLGA/AR NPs, establishing effective transdermal Aconine delivery. In an in vitro CIPN model with paclitaxel (PTX)-treated PC12 cells, HA-PLGA/AR NPs stimulate enhanced neurite growth, validating their localized analgesic impact on CIPN and suggesting potential symptom alleviation. Taken together, HA-PLGA/AR NPs offer a promising strategy for controlled transdermal Aconine delivery, potentially alleviating CIPN and addressing various neuropathies and diseases.</p>\",\"PeriodicalId\":29975,\"journal\":{\"name\":\"Advanced Nanobiomed Research\",\"volume\":\"4 5\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400006\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanobiomed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202400006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202400006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

化疗引起的周围神经病变(CIPN)带来了疼痛和麻木等挑战,由于目前的局限性,需要创新的治疗方法。传统方法依赖于止痛药物和剂量调整,无法解决神经毒性问题,导致疼痛缓解不充分和不良反应。乌头根(AR)是一种药草,几个世纪以来一直被用于治疗各种疾病,它含有一种名为乌头碱的化合物,可以通过阻断特定的神经通道来缓解疼痛。然而,乌头根也含有乌头碱,这是一种有毒物质,通过加热可水解为无毒的乌头碱。在此,我们制作了包裹乌头碱的透明质酸-聚(乳酸-共聚乙醇酸)纳米颗粒(HA-PLGA/AR NPs),实现了控释、保护和透皮给药,提高了治疗效果。高效液相色谱法确定了经过 48 小时 AR 煮沸后的最佳乌头碱含量,并确认神经毒性最小。通过透射电子显微镜、动态光散射和体外试验进行的表征表明,HA-PLGA/AR NPs 具有优异的药物释放性能,可有效实现乌头碱的透皮给药。在使用紫杉醇(PTX)处理 PC12 细胞的体外 CIPN 模型中,HA-PLGA/AR NPs 促进了神经元的生长,验证了其对 CIPN 的局部镇痛作用,并表明其具有缓解症状的潜力。综上所述,HA-PLGA/AR NPs 为可控的经皮输送乌头碱提供了一种前景广阔的策略,有可能缓解 CIPN 并治疗各种神经病变和疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Transdermal Delivery of Polymeric Nanoparticles Containing Aconite Root for the Treatment of Chemotherapy-Induced Peripheral Neuropathy

Transdermal Delivery of Polymeric Nanoparticles Containing Aconite Root for the Treatment of Chemotherapy-Induced Peripheral Neuropathy

Chemotherapy-induced peripheral neuropathy (CIPN) poses challenges like pain and numbness, necessitating innovative treatments due to current limitations. Conventional approaches, relying on pain relief medications and dose adjustments, fall short in addressing neurotoxicity, resulting in inadequate pain relief and undesired effects. Aconite root (AR), a medicinal herb withcenturies of use against various diseases, contains a compound named Aconine, which alleviates pain by blocking specific neural channels. However, AR also contains Aconitine, a toxic substance hydrolyzed into nontoxic Aconine through heating. Herein, hyaluronate-poly(lactic-co-glycolic acid) nanoparticles (HA-PLGA/AR NPs) encapsulating Aconine are fabricated, enabling controlled release, protection, and transdermal delivery, enhancing therapeutic outcomes. High-performance liquid chromatography identifies optimal Aconine content after 48 h of AR boiling, with minimal neural toxicity confirmed. Characterization via transmission electron microscopy, dynamic light scattering, and in vitro assays demonstrates superior drug release by HA-PLGA/AR NPs, establishing effective transdermal Aconine delivery. In an in vitro CIPN model with paclitaxel (PTX)-treated PC12 cells, HA-PLGA/AR NPs stimulate enhanced neurite growth, validating their localized analgesic impact on CIPN and suggesting potential symptom alleviation. Taken together, HA-PLGA/AR NPs offer a promising strategy for controlled transdermal Aconine delivery, potentially alleviating CIPN and addressing various neuropathies and diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Nanobiomed Research
Advanced Nanobiomed Research nanomedicine, bioengineering and biomaterials-
CiteScore
5.00
自引率
5.90%
发文量
87
审稿时长
21 weeks
期刊介绍: Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science. The scope of Advanced NanoBiomed Research will cover the following key subject areas: ▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging. ▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications. ▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture. ▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs. ▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization. ▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems. with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信