{"title":"Advances in Nanocarriers for Delivering Therapeutic Agents Against Hepatitis B Virus","authors":"Jia Li, Jianlan Yuan, Hugang Li, Jingyi Guo, Mingjun Li, Tingbin Zhang, Xing-Jie Liang, Haiming Fan, Xiaoli Liu","doi":"10.1002/anbr.202300132","DOIUrl":null,"url":null,"abstract":"<p>Hepatitis B virus (HBV) infection is a crucial public health issue and a major cause of liver disease, such as cirrhosis and hepatocellular carcinoma. At present, orally administered small molecule drugs, such as nucleoside / nucleotide analogues, are recommended as the first-line treatment for HBV. However, the therapeutic efficacy of these drugs is hindered by off-target toxicity caused by the whole-body permeation distribution of these oral drugs. As an emerging drug delivery technology, systemically administered nanocarriers can enhance the aqueous solubility and stability of encapsulated drugs, prolong circulation times, and deliver them efficiently to the liver, showing great promise for increasing the safety and efficacy of small molecule drugs. Furthermore, nanocarriers also accelerate the clinical translation of new therapies, such as nucleic acids and vaccines. This review article highlights the progress of nanoparticle delivery systems in anti-HBV therapeutics and discusses the opportunities and challenges for the future development of anti-HBV nanotherapeutics.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 6","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300132","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hepatitis B virus (HBV) infection is a crucial public health issue and a major cause of liver disease, such as cirrhosis and hepatocellular carcinoma. At present, orally administered small molecule drugs, such as nucleoside / nucleotide analogues, are recommended as the first-line treatment for HBV. However, the therapeutic efficacy of these drugs is hindered by off-target toxicity caused by the whole-body permeation distribution of these oral drugs. As an emerging drug delivery technology, systemically administered nanocarriers can enhance the aqueous solubility and stability of encapsulated drugs, prolong circulation times, and deliver them efficiently to the liver, showing great promise for increasing the safety and efficacy of small molecule drugs. Furthermore, nanocarriers also accelerate the clinical translation of new therapies, such as nucleic acids and vaccines. This review article highlights the progress of nanoparticle delivery systems in anti-HBV therapeutics and discusses the opportunities and challenges for the future development of anti-HBV nanotherapeutics.
期刊介绍:
Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science.
The scope of Advanced NanoBiomed Research will cover the following key subject areas:
▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging.
▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications.
▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture.
▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs.
▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization.
▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems.
with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.