Monitoring the Intracellular Fate of Molecular Beacons: The Challenge of False Positive Signals

IF 4 Q2 ENGINEERING, BIOMEDICAL
Diogo Volpati, Pedro H. B. Aoki, Therese B. Johansson, Roberto Munita, Frida Ekstrand, Sabrina Ruhrmann, Karl Bacos, Charlotte Ling, Christelle N. Prinz
{"title":"Monitoring the Intracellular Fate of Molecular Beacons: The Challenge of False Positive Signals","authors":"Diogo Volpati,&nbsp;Pedro H. B. Aoki,&nbsp;Therese B. Johansson,&nbsp;Roberto Munita,&nbsp;Frida Ekstrand,&nbsp;Sabrina Ruhrmann,&nbsp;Karl Bacos,&nbsp;Charlotte Ling,&nbsp;Christelle N. Prinz","doi":"10.1002/anbr.202300147","DOIUrl":null,"url":null,"abstract":"<p>Molecular beacons (MBs) have been used on surfaces for detecting oligonucleotides. Attempts to use them intracellularly for monitoring mRNA content have been made, however, without any clear conclusion regarding the reliability of the method, mainly due to false positive signals. To reach an understanding of the intracellular fate of MBs, a critical question remains: how long after MB delivery and where in the cell does a false positive signal appear? To answer that question, the MB delivery method should allow for a time-stamped synchronized delivery of MBs to multiple cells, resulting in MBs being distributed in the cytosol immediately after delivery. Herein, nanostraws are used to inject MBs targeting insulin (<i>Ins1</i>) mRNA directly in the cytosol of clonal beta-cells, and the evolution of the MB fluorescence in time and space is monitored. The results show an MB translocation to the nucleus, where MBs are degraded or where they open nonspecifically, before the fluorophore alone is expelled back from the nucleus to the cytosol. The signal translocation to the nucleus and back to the cytosol is faster when scrambled MBs are used. The results shed light on the intracellular fate of MBs and highlight the short time scales before false positive signals become predominant.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 5","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202300147","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202300147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular beacons (MBs) have been used on surfaces for detecting oligonucleotides. Attempts to use them intracellularly for monitoring mRNA content have been made, however, without any clear conclusion regarding the reliability of the method, mainly due to false positive signals. To reach an understanding of the intracellular fate of MBs, a critical question remains: how long after MB delivery and where in the cell does a false positive signal appear? To answer that question, the MB delivery method should allow for a time-stamped synchronized delivery of MBs to multiple cells, resulting in MBs being distributed in the cytosol immediately after delivery. Herein, nanostraws are used to inject MBs targeting insulin (Ins1) mRNA directly in the cytosol of clonal beta-cells, and the evolution of the MB fluorescence in time and space is monitored. The results show an MB translocation to the nucleus, where MBs are degraded or where they open nonspecifically, before the fluorophore alone is expelled back from the nucleus to the cytosol. The signal translocation to the nucleus and back to the cytosol is faster when scrambled MBs are used. The results shed light on the intracellular fate of MBs and highlight the short time scales before false positive signals become predominant.

Abstract Image

监测分子信标的细胞内命运:假阳性信号的挑战
分子信标(MBs)已被用于表面检测寡核苷酸。不过,人们曾尝试在细胞内使用它们来监测 mRNA 含量,但对该方法的可靠性没有得出明确结论,主要原因是出现了假阳性信号。要想了解甲基溴在细胞内的去向,一个关键问题仍然存在:甲基溴递送后多长时间,在细胞的哪个部位会出现假阳性信号?要回答这个问题,甲基溴递送方法应允许将甲基溴同步递送到多个细胞,从而使甲基溴在递送后立即分布在细胞质中。在这里,使用纳米吸盘将靶向胰岛素(Ins1)mRNA的甲基溴直接注入克隆β细胞的细胞质,并监测甲基溴荧光在时间和空间上的演变。结果表明,在荧光团单独从细胞核排回细胞质之前,MB 易位到细胞核,在那里 MB 被降解或非特异性开放。使用加扰甲基溴时,信号转运到细胞核再返回细胞质的速度更快。这些结果揭示了甲基溴在细胞内的命运,并强调了假阳性信号占主导地位之前的短时间尺度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Nanobiomed Research
Advanced Nanobiomed Research nanomedicine, bioengineering and biomaterials-
CiteScore
5.00
自引率
5.90%
发文量
87
审稿时长
21 weeks
期刊介绍: Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science. The scope of Advanced NanoBiomed Research will cover the following key subject areas: ▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging. ▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications. ▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture. ▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs. ▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization. ▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems. with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信