ChemPub Date : 2025-04-28DOI: 10.1016/j.chempr.2025.102556
Xiang Sun, Kai Wu, Paula C.P. Teeuwen, Philipp Pracht, David J. Wales, Jonathan R. Nitschke
{"title":"Proton-driven lithium separation using alkali-templated coordination cages","authors":"Xiang Sun, Kai Wu, Paula C.P. Teeuwen, Philipp Pracht, David J. Wales, Jonathan R. Nitschke","doi":"10.1016/j.chempr.2025.102556","DOIUrl":"https://doi.org/10.1016/j.chempr.2025.102556","url":null,"abstract":"The extraction of lithium from natural deposits is energy intensive due to its coexistence with physiochemically similar alkali (Na<sup>+</sup> and K<sup>+</sup>) and alkaline earth (Mg<sup>2+</sup> and Ca<sup>2+</sup>) metal ions. Methods for the direct and specific extraction of lithium from salt mixtures are thus essential to ensure an adequate supply of this metal for the batteries needed to decarbonize the world economy. Here, we present the preparation of alkali-metal-templated coordination cages and their application to lithium extraction. Within the cage framework, protons alter the relative binding affinities of Li<sup>+</sup> and similar metal ions: protons associate exclusively with Li<sup>+</sup> in close proximity at the cage vertices, repelling other cations as a result of increased electrostatic repulsion, enhanced steric hindrance, and reduced availability of coordinating nitrogen atoms. We developed this proton-driven lithium recognition within coordination cages into a separation cycle capable of extracting Li<sup>+</sup> from a mixture of salts that includes Na<sup>+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, and Ca<sup>2+</sup>.","PeriodicalId":268,"journal":{"name":"Chem","volume":"147 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2025-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143880698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPub Date : 2025-04-24DOI: 10.1016/j.chempr.2025.102552
Junjie Su, Chang Liu, Haibo Zhou, Lin Zhang, Wenqian Jiao, Su Liu, Yangdong Wang, Zaiku Xie
{"title":"Syngas chemistry: Rational design of tandem reaction pathway for directional hydrocarbon synthesis","authors":"Junjie Su, Chang Liu, Haibo Zhou, Lin Zhang, Wenqian Jiao, Su Liu, Yangdong Wang, Zaiku Xie","doi":"10.1016/j.chempr.2025.102552","DOIUrl":"https://doi.org/10.1016/j.chempr.2025.102552","url":null,"abstract":"Syngas to hydrocarbons, especially olefins and aromatics, is an important platform technology linking raw carbon resources to terminal materials. This perspective summarizes the differences between Fischer-Tropsch synthesis and the coupling tandem pathway and identifies respective merits and defects. The Fischer-Tropsch pathway is a traditional conversion technology with metals or metal oxides as the catalytic active components that is suitable for synthesizing mixed hydrocarbon products. The coupling tandem pathway is a continuous process centered around the generation, migration, and transformation of intermediates. Matching the optimal reaction temperature for both intermediate generation and transformation is a prerequisite for the highly selective synthesis of hydrocarbons with specific carbon numbers. Designing a migration process with a shorter distance, less resistance, and a smoother path is an effective strategy to improve overall syngas conversion efficiency in tandem reactions, which is also crucial for enhancing the competitiveness of the coupling pathway.","PeriodicalId":268,"journal":{"name":"Chem","volume":"7 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143867260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPub Date : 2025-04-24DOI: 10.1016/j.chempr.2025.102549
Bowen Yang, Jianlin Shi
{"title":"Generalized concept of catalysis for chemical reactions: Nanocatalysis in medicine as a paradigm","authors":"Bowen Yang, Jianlin Shi","doi":"10.1016/j.chempr.2025.102549","DOIUrl":"https://doi.org/10.1016/j.chempr.2025.102549","url":null,"abstract":"Catalysis is traditionally defined as the kinetic acceleration of a chemical reaction by reducing its activation energy, using catalysts, without altering the thermodynamic equilibrium of the reaction. In the past several decades, various novel catalytic modalities, such as photocatalysis, electrocatalysis, and sonocatalysis, have been developed via the change of the thermodynamic equilibria through external energy inputs; these are beyond the traditional concept of catalysis by reaction path regulation and therefore necessitate a broadened or generalized concept of “catalysis” to match current developments. Additionally, the concept of catalysis has recently been introduced in the biomedical field, resulting in the development of “nanocatalytic medicine.” Such a catalytic therapeutic strategy can be fulfilled both kinetically and thermodynamically by chemical reaction acceleration. In this perspective, we will present our thinking on the generalized concept of catalysis, mainly by referring to the most recent advances of “catalysis” in the field of nanocatalytic medicine.","PeriodicalId":268,"journal":{"name":"Chem","volume":"72 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2025-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143867259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPub Date : 2025-04-23DOI: 10.1016/j.chempr.2025.102553
Scot M. Sutton, Sunil Pulletikurti, Huacan Lin, Ramanarayanan Krishnamurthy, Charles L. Liotta
{"title":"Abiotic aldol reactions of formaldehyde with ketoses and aldoses—Implications for the prebiotic synthesis of sugars by the formose reaction","authors":"Scot M. Sutton, Sunil Pulletikurti, Huacan Lin, Ramanarayanan Krishnamurthy, Charles L. Liotta","doi":"10.1016/j.chempr.2025.102553","DOIUrl":"https://doi.org/10.1016/j.chempr.2025.102553","url":null,"abstract":"The aldol reactions of formaldehyde is the essence of the formose reaction, considered the leading prebiotic pathway for accessing sugars on the early Earth. However, the formose reaction produces an intractable mixture, and efforts to tame the reaction to selectively and efficiently form aldose sugars have been unsuccessful. We have undertaken an NMR-mechanistic study of the aldol reactions of excess formaldehyde with glycolaldehyde, dihydroxyacetone, erythrulose, and erythrose under mild conditions and show that the reaction pathway is dominated by the formation linear ketoses and eventual accumulation of branched ketoses. Formation of C4 and higher aldo-sugars were not observed, implying that neither carbonyl migrations nor retroaldol reactions are occurring. Our results suggest that (1) controlling the aldol reaction of formaldehyde to selectively produce linear aldoses appears unfeasible; and (2) the concept of the formose reaction as a prebiotic source of ribose on early Earth needs serious reconsideration, and other models/options should be explored.","PeriodicalId":268,"journal":{"name":"Chem","volume":"51 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2025-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143862586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPub Date : 2025-04-21DOI: 10.1016/j.chempr.2025.102550
Ke Liu, David Egea-Arrebola, Ruchuta Ardkhean, Laura Cunningham, Kirsten E. Christensen, Robert S. Paton, Stephen P. Fletcher
{"title":"Ligand-enabled override of the memory effect in Rh-catalyzed asymmetric Suzuki reactions","authors":"Ke Liu, David Egea-Arrebola, Ruchuta Ardkhean, Laura Cunningham, Kirsten E. Christensen, Robert S. Paton, Stephen P. Fletcher","doi":"10.1016/j.chempr.2025.102550","DOIUrl":"https://doi.org/10.1016/j.chempr.2025.102550","url":null,"abstract":"Chiral non-racemic allylic species are key building blocks for many carbon-containing molecules, including pharmaceuticals and polymers. Metal-catalyzed asymmetric additions of nucleophiles to allylic species undergo different pathways depending on the metal and nucleophile combination, hindering the development of useful addition reactions with aromatic nucleophiles. We report an asymmetric cross-coupling method between aryl boronic acids and linear allylic phosphates to give branched allylic products. This Suzuki-type reaction overcomes the “memory effect” in Rh catalysis, enabling an overall SN2′ transformation by rate-determining reductive elimination and forming a new stereogenic center adjacent to a terminal vinyl moiety. The method tolerates preexisting stereogenic centers, allowing for synthetic strategies where drugs and natural products are elaborated via diastereoselective allylic arylations. The method is used, as the catalyst-controlled stereochemistry-setting step, in an iterative strategy to give arrays of aryl-substituted contiguous stereogenic centers. This approach will complement existing catalyst-controlled stereoselective methods for forming C–C bonds.","PeriodicalId":268,"journal":{"name":"Chem","volume":"6 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2025-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143853600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPub Date : 2025-04-18DOI: 10.1016/j.chempr.2025.102546
Jorge D. Martín-Bernardos, Katrin Golob, Wei W. Chen, Orsola A. Luongo, Inés Sedó, Ana B. Cuenca, Alexandr Shafir
{"title":"Polar π stacking for metal-free near, remote, and ultra-remote C–H coupling with aryliodanes","authors":"Jorge D. Martín-Bernardos, Katrin Golob, Wei W. Chen, Orsola A. Luongo, Inés Sedó, Ana B. Cuenca, Alexandr Shafir","doi":"10.1016/j.chempr.2025.102546","DOIUrl":"https://doi.org/10.1016/j.chempr.2025.102546","url":null,"abstract":"We introduce a C–H coupling process in which an aromatic C–I position serves as trampoline for targeting various aromatic C–H positions. The reaction is set in motion by an interaction between the λ<sup>3</sup>-iodane ArI(OAc)<sub>2</sub> and the π system of polyunsaturated organosilanes. In particular, the silyl-terminated enynes engage in fully regioselective <em>ortho</em> and <em>para</em> C–H functionalization, with selectivity switch achieved by reversing the order of the substrate’s ene and yne fragments. Density functional theory (DFT) calculations show that the <em>ortho</em> selectivity is governed by a [3,3] sigmatropic rearrangement, while the <em>para</em> coupling occurs through a directional three-point π interaction of the enyne-derived cationic π system, giving rise to an essentially barrierless [5,5] sigmatropic rearrangement. Furthermore, iodane-guided C–H functionalization of 2-iodonaphthalene could be directed to the ultra-remote C6 position through further π extension of the organosilanes partner. The latter reaction represents a nearly unprecedented example of a formal [7,7] sigmatropic rearrangement.","PeriodicalId":268,"journal":{"name":"Chem","volume":"30 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143846495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPub Date : 2025-04-18DOI: 10.1016/j.chempr.2025.102547
Rohan Bhimpuria, Rima Charaf, Ke Ye, Anders Thapper, Harsha Sathyan, Mårten Ahlquist, Leif Hammarström, K. Eszter Borbas
{"title":"A Sm(II)-based catalyst for the reduction of dinitrogen, nitrite, and nitrate to ammonia or urea","authors":"Rohan Bhimpuria, Rima Charaf, Ke Ye, Anders Thapper, Harsha Sathyan, Mårten Ahlquist, Leif Hammarström, K. Eszter Borbas","doi":"10.1016/j.chempr.2025.102547","DOIUrl":"https://doi.org/10.1016/j.chempr.2025.102547","url":null,"abstract":"Industrial dinitrogen (N<sub>2</sub>) reduction to ammonia in the Haber-Bosch synthesis is essential for producing fertilizers and, consequently, food. Methods wherein the energy for nitrogen activation is supplied by light could provide more sustainable alternatives to existing ones. The combination of a photosensitizer and a lanthanide catalyst is reported for an effective >2e<sup>−</sup> reduction of N<sub>2</sub> in what is the first transition-metal-free molecular photocatalyst for ammonia synthesis. The lanthanide is Earth-abundant Sm. The reaction proceeds at ambient pressure and temperature, with high turnover numbers (up to 98), with visible light irradiation in aqueous solvent mixtures and even pure water, and it uses an environmentally benign non-metallic sacrificial reductant. Nitrite and nitrate were also efficiently reduced to ammonia. Thus, the first photocatalytic co-reduction of nitrite and bicarbonate to urea using an Sm-based photocatalyst was achieved.","PeriodicalId":268,"journal":{"name":"Chem","volume":"67 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143846763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPub Date : 2025-04-16DOI: 10.1016/j.chempr.2025.102542
Runda Li, Libing Yao, Jingyi Sun, Zengyi Sun, Kai Zhang, Jingjing Xue, Rui Wang
{"title":"Challenges and perspectives for the perovskite module research","authors":"Runda Li, Libing Yao, Jingyi Sun, Zengyi Sun, Kai Zhang, Jingjing Xue, Rui Wang","doi":"10.1016/j.chempr.2025.102542","DOIUrl":"https://doi.org/10.1016/j.chempr.2025.102542","url":null,"abstract":"With rapid technological advancements, perovskite photovoltaics are approaching the final stage of commercialization. However, challenges arise due to differences between the fabrication processes for large-scale perovskite solar modules (PSMs) and laboratory-scale perovskite solar cells (PSCs). In this perspective, we highlight key obstacles in the transition from PSCs to PSMs across three main fabrication stages: precursor solution preparation, large-scale perovskite deposition, and post-treatment procedures for modules. Beyond addressing long-term stability, we emphasize critical yet often overlooked factors: reproducibility, cost, quality control, and sustainability in PSM manufacture. Finally, we provide our outlook by posing three controversial questions: which type of PSMs will be finally commercialized, how to balance the device area and lateral resistance, and how to realize a stable supply of raw materials. We hope that this effort may provide insights into targeted scientific strategies that can bridge these gaps and facilitate the commercialization of perovskite photovoltaics.","PeriodicalId":268,"journal":{"name":"Chem","volume":"3 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143837101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPub Date : 2025-04-16DOI: 10.1016/j.chempr.2025.102543
Mark E. Carrington, Loh Min Yi, Erlendur Jónsson, Clare P. Grey
{"title":"Practical flow battery diagnostics enabled by chemically mediated monitoring","authors":"Mark E. Carrington, Loh Min Yi, Erlendur Jónsson, Clare P. Grey","doi":"10.1016/j.chempr.2025.102543","DOIUrl":"https://doi.org/10.1016/j.chempr.2025.102543","url":null,"abstract":"Aqueous organic flow batteries are a promising technology class for long-duration energy storage. However, the poor stability of redox-active components under the conditions frequently used in these batteries, coupled with the inherently high degree of active material chemical complexity, frequently gives rise to intricate degradation pathways that both limit attainable cycle life and are challenging to probe experimentally. Here, we utilize solution pH and bulk magnetic susceptibility to monitor the native minor equilibrium side reaction between water and the one-electron oxidized state of 2,2,6,6-tetramethyl-4-hydroxy-piperidin-1-oxyl (4-hydroxy-TEMPO)—an archetypical flow battery catholyte. This side reaction readily reports on both the main redox reaction of 4-hydroxy-TEMPO, which itself is not proton coupled, as well as on its principal self-discharge pathway. In so doing, it provides accurate, low-cost, and sensitive experimental insights into battery state of charge, state of health, and operating conditions for both flow and hybrid flow configurations.","PeriodicalId":268,"journal":{"name":"Chem","volume":"55 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143837102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"One-dimensional lead halide perovskite quantum ribbons with controllable edge terminations and ribbon widths","authors":"Xiaofan Jiang, Mingyuan Li, Yu Tao, Meng Zhang, Xinyu Li, Tianhao Zhang, Jiazhen Gu, Guangsheng Bai, Nanlong Zheng, Xuan Zhao, Huilong Hong, Leyang Jin, Xu Huang, Sanli Xu, Yan Guan, Chen Li, Wenkai Zhang, Yongping Fu","doi":"10.1016/j.chempr.2025.102548","DOIUrl":"https://doi.org/10.1016/j.chempr.2025.102548","url":null,"abstract":"One-dimensional (1D) halide perovskite quantum ribbons, featuring 1D corner-sharing octahedral networks, are promising for optoelectronics and photonics due to quantum confinement in two dimensions. However, the rational design of 1D perovskites remains challenging, and existing materials with narrow ribbon widths predominantly form self-trapped excitons, which limit their potential applications. Here, we synthesize 30 1D perovskites with controllable ribbon widths and edge octahedra terminations by organic cation engineering. We observe the absence of self-trapped excitons as the ribbon width increases up to four octahedra, alongside the ability to modulate their optoelectronic properties by tailoring the edge terminations. The 1D free excitons result in in-plane anisotropic photoluminescence (PL) emission with polarization degree reaching 60%. Moreover, we observe robust exciton-photon coupling with Rabi splitting energies up to 800 meV, which is significantly larger than those of three-dimensional (3D) and two-dimensional (2D) perovskites, demonstrating a class of 1D quantum materials for advanced optoelectronics and photonics.","PeriodicalId":268,"journal":{"name":"Chem","volume":"136 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143832147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}