ChemPub Date : 2024-11-01DOI: 10.1016/j.chempr.2024.10.006
Xiao-Jing Xie, Heng Zeng, Yong-Liang Huang, Ying Wang, Qi-Yun Cao, Weigang Lu, Dan Li
{"title":"Direct production of o-xylene from six-component BTEXs using a channel-pore interconnected metal-organic framework","authors":"Xiao-Jing Xie, Heng Zeng, Yong-Liang Huang, Ying Wang, Qi-Yun Cao, Weigang Lu, Dan Li","doi":"10.1016/j.chempr.2024.10.006","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.10.006","url":null,"abstract":"Metal-organic frameworks (MOFs) with precisely controlled pore dimensions have greatly enriched the versatility of molecular sieving materials. Here, we report a channel-pore interconnected MOF (JNU-2) for direct production of <em>o</em>-xylene from six-component BTEXs (benzene, toluene, ethylbenzene, <em>o</em>-xylene, <em>m</em>-xylene, and <em>p</em>-xylene) in a single adsorption process. Individual adsorption measurements show complete exclusion of <em>o</em>-xylene and benchmark adsorption of other BTEXs. Competitive adsorption studies reveal record-high adsorption selectivity of other BTEXs over <em>o</em>-xylene. Vapor-phase breakthrough experiments verify its superior separation potential for sieving <em>o</em>-xylene from BTEXs. We further demonstrate <em>o</em>-xylene purification by simply soaking JNU-2 (10 g) in BTEXs (18 mL, 90% <em>o</em>-xylene) at room temperature, realizing an average of 15.2 mL of <em>o</em>-xylene (99.5%+ purity, 94% recovery) for 10 cycles. Considering its exceptional stability, JNU-2 may have great promise for energy-efficient <em>o</em>-xylene separation from BTEXs.","PeriodicalId":268,"journal":{"name":"Chem","volume":"8 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPub Date : 2024-10-31DOI: 10.1016/j.chempr.2024.10.003
Sangbin Park, Gyumin Kang, Wantae Kim, Sieun Jeon, Myung-Kun Chung, Hee-Seung Lee, Dong Ki Yoon, Sunkyu Han
{"title":"Synthesis of securingine B enables photoresponsive materials design","authors":"Sangbin Park, Gyumin Kang, Wantae Kim, Sieun Jeon, Myung-Kun Chung, Hee-Seung Lee, Dong Ki Yoon, Sunkyu Han","doi":"10.1016/j.chempr.2024.10.003","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.10.003","url":null,"abstract":"In general, natural products exist in their most thermodynamically stable form. Therefore, final stage-reaction conditions leading to thermodynamic equilibrium often facilitate the production of the desired natural products. On the other hand, syntheses of contra-thermodynamic natural products pose greater challenges, as the thermodynamic bias should be overcome. Herein, we present the synthesis of contra-thermodynamic securinega alkaloid securingine B, derived from the more thermodynamically stable isomer secu’amamine D. Harnessing the disparity in triplet energy between two natural products, we have established a photochemical equilibrium favoring securingine B. Conversely, secu’amamine D was reformed from securingine B under thermodynamic equilibrium conditions. Inspired by these observations, we devised a novel type of photoswitching platform by introducing a push-pull system to the securinega framework. By leveraging this new photoswitching scaffold, we have developed a securingine B-inspired photochromic material and, subsequently, exploited it as a photoresponsive chiral dopant.","PeriodicalId":268,"journal":{"name":"Chem","volume":"239 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Remote optical chirality transfer via helical polyaromatic capsules upon encapsulation","authors":"Hayate Sasafuchi, Mayuko Ueda, Natsuki Kishida, Tomohisa Sawada, Seika Suzuki, Yoshitane Imai, Michito Yoshizawa","doi":"10.1016/j.chempr.2024.09.031","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.09.031","url":null,"abstract":"Helical molecular assemblies have been widely created so far, taking inspiration from helical bioconstructs (e.g., DNAs and proteins). However, the host utilities of such synthetic helices remain largely underdeveloped, particularly as chiroptical nanotools. Here, we report the preparation of new polyaromatic capsules with right- or left-handed quadruple helicity, regulated by chiral saccharide-based side chains attached at the outer surface. The capsule quantitatively encapsulates achiral fluorescent dyes in the cavity. The resultant host-guest complexes display excellent circularly polarized luminescence properties (up to |<em>g</em><sub>lum</sub>| = 1.6 × 10<sup>−2</sup>) derived from the bound dyes, through efficient optical chirality transfer from the outer biochiral groups to the inner achiral dyes via the quadruple helical shell, which represents an unprecedented chiroptical strategy. This nanotool can be applied to spherical fullerene to induce its chirality with high efficiency in solution (up to |<em>g</em><sub>abs</sub>| = 1.0 × 10<sup>−2</sup>) and in the solid state.","PeriodicalId":268,"journal":{"name":"Chem","volume":"1 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring enzymatic degradation, reinforcement, recycling, and upcycling of poly(ester)s-poly(urethane) with movable crosslinks","authors":"Jiaxiong Liu, Ryohei Ikura, Kenji Yamaoka, Akihide Sugawara, Yuya Takahashi, Bunsho Kure, Naomi Takenaka, Junsu Park, Hiroshi Uyama, Yoshinori Takashima","doi":"10.1016/j.chempr.2024.09.026","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.09.026","url":null,"abstract":"Enzymes are highly efficient, chemoselective, and sustainable biocatalysts, standing out as eco-friendly tools to advance the circular plastics economy. Herein, we explored enzymatic reactions of poly(<em>ε</em>-caprolactone)-poly(urethane) (PCL-PUs) in organic solvent under different reaction conditions using Novozym 435 (immobilized lipase) as the enzyme. PCL-PUs with triacetylated γ-cyclodextrin (TAcγCD)-based movable crosslinks (PCL-γCD-PU) not only exhibited excellent mechanical properties due to effective energy dissipation, but also efficient enzymatic degradation that was optimized for increases in TAcγCD content. Under reaction time control, molecular weight and mechanical properties of PCL-γCD-PU were enhanced by a novel enzymatic reinforcement strategy. Without sorting, the degraded products are versatile resources that can be enzymatically closed-loop recycled by switching reaction concentration or enzymatically upcycled into value-added polymers by mixing with selective substrates. The facile polymer structure design combined with enzymatic reactions is expected to provide a broad approach for toughening various polymeric materials and advancing their development as sustainable resources.","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modulating hetero-multimetallic atoms in covalent organic framework for efficient oxidization of olefin compounds","authors":"Qinghao Meng, Panzhe Qiao, Dan Deng, Cheng Zhang, Fengchao Cui, Xianghui Ruan, Yajie Yang, Jiarui Cao, Zeyu Wang, Xujiao Ma, Ye Yuan, Guangshan Zhu","doi":"10.1016/j.chempr.2024.10.001","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.10.001","url":null,"abstract":"Heterogeneous multinuclear catalysts have clear advantages, such as high selectivity, cascading production, and specific chemical transformations, but they are difficult to synthesize due to their high structural complexity. Here, we fabricated crystalline, porous covalent organic frameworks (COFs) with high-density chelating sites by incorporating pyrimidine groups onto their pore wall. Using a molecular coordination imprint strategy, tri-coordination (2N, 1O) and di-coordination (1N, 1O) vacancies were proportionally prepared using Cu(II) ions as templates. Consequently, various hetero-multimetallic assemblies, including Cu(II)/Pd(II), Cu(II)/Fe(III), Cu(II)/Zn(II), and Co(II)/Pd(II), were obtained with tunable ion contents in the range of 3:0 to 3:3 on the COF skeleton. The Cu(II)/Cu(II)/Pd(II)-doped COF sample implemented a sustainable oxidization of olefin compounds, which outperformed all existing catalysts to date for the synthesis of value-added ketone, surpassing 620 times compared with the commercial catalyst (PdCl<sub>2</sub>/CuCl<sub>2</sub>).","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPub Date : 2024-10-29DOI: 10.1016/j.chempr.2024.10.002
Dongsheng Mao, Wenxing Li, Xueliang Liu, Jingqi Chen, Dali Wei, Lei Luo, Qianqin Yuan, Yu Yang, Xiaoli Zhu, Weihong Tan
{"title":"Rolling circle amplification-based DNA-enzyme nanostructure for immobilization and functionalization of enzymes","authors":"Dongsheng Mao, Wenxing Li, Xueliang Liu, Jingqi Chen, Dali Wei, Lei Luo, Qianqin Yuan, Yu Yang, Xiaoli Zhu, Weihong Tan","doi":"10.1016/j.chempr.2024.10.002","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.10.002","url":null,"abstract":"Enzymes with ingenious structures and diverse functions are crucial for biomedical applications but face challenges like instability, limited targetability, and delivery complexity. We developed core-shell DNA-enzyme conjugates using rolling circle amplification (RCA), creating RCA-based DNA-enzyme nanostructure (RCA-DEN) for efficient enzyme immobilization and functionalization. RCA-DEN, characterized by densely packed nucleic acids and negligible disruption of enzyme activity, increases the stability of enzymes and nucleic acids while reducing technical difficulties, making it a versatile platform for diverse biomedical applications. This approach facilitates the modular customization of enzymes and the incorporation of functionalities such as aptamers and DNAzymes. The efficacy of RCA-DEN has been demonstrated in several areas, including selective catalysis, cascade catalysis, dynamic monitoring of intracellular chemical processes, and synergistic therapeutic interventions against tumors. Overall, this work provides a new perspective on enzyme immobilization and functionalization, paving the way for broader biomedical applications of enzymes.","PeriodicalId":268,"journal":{"name":"Chem","volume":"79 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPub Date : 2024-10-25DOI: 10.1016/j.chempr.2024.09.018
Tristan H. Borchers, Filip Topić, Mihails Arhangelskis, Michael Ferguson, Cameron B. Lennox, Patrick A. Julien, Tomislav Friščić
{"title":"Terahertz-Raman spectroscopy for in situ benchtop monitoring of changes to extended, supramolecular structure in milling mechanochemistry","authors":"Tristan H. Borchers, Filip Topić, Mihails Arhangelskis, Michael Ferguson, Cameron B. Lennox, Patrick A. Julien, Tomislav Friščić","doi":"10.1016/j.chempr.2024.09.018","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.09.018","url":null,"abstract":"Low-frequency Raman, also known as terahertz-Raman (THz-Raman), spectroscopy offers a laboratory benchtop-based alternative to synchrotron X-ray diffraction for real-time, <em>in situ</em> monitoring of ball-milling mechanochemical reactions. Although direct monitoring of the long-range structure of materials during mechanochemical reactions is generally challenging by conventional Raman spectroscopy, and typically requires synchrotron X-ray diffraction, here we use THz-Raman spectroscopy to monitor mechanosynthesis of cocrystals, stoichiomorphs, and polymorphs, detect multi-step sequences, and discover solid-state phases in systems difficult to differentiate using fingerprint-region Raman spectroscopy—all through real-time observation of changes in lattice vibrational models. The methodology is augmented by periodic density functional theory (DFT), which enables structural interpretation of spectroscopic changes, notably the identification of THz-Raman bands associated with halogen bond transformations. Simultaneous monitoring of mechanochemical processes in both the fingerprint and low-frequency Raman regions enables real-time observation of changes to extended as well as molecular structure during milling, in a single laboratory benchtop experiment, without synchrotron radiation.","PeriodicalId":268,"journal":{"name":"Chem","volume":"98 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142489464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPub Date : 2024-10-21DOI: 10.1016/j.chempr.2024.09.024
Kaina Wang, Jipeng Fu, Sibo Zhan, Hongliang Dong, Chenjie Lou, Tianyi Sun, Jinru Liu, Bingyu Huang, Long Tian, Lihong Jiang, Ran Pang, Su Zhang, Huajie Luo, Mathieu Allix, Xiaojun Kuang, Shiqing Xu, Hongjie Zhang, Mingxue Tang
{"title":"Boosting narrow-band near-infrared-emitting efficiency of thulium by lattice modulation for reflective absorption bioimaging","authors":"Kaina Wang, Jipeng Fu, Sibo Zhan, Hongliang Dong, Chenjie Lou, Tianyi Sun, Jinru Liu, Bingyu Huang, Long Tian, Lihong Jiang, Ran Pang, Su Zhang, Huajie Luo, Mathieu Allix, Xiaojun Kuang, Shiqing Xu, Hongjie Zhang, Mingxue Tang","doi":"10.1016/j.chempr.2024.09.024","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.09.024","url":null,"abstract":"Near-infrared (NIR) luminescence materials with narrow-band emissions are essential for brain and muscle activity imaging based on the absorption difference of oxygenated proteins. However, most known NIR-emitting materials are limited by low external quantum efficiency (EQE) and broadband properties. This work presents the careful design of Tm, Na-doped strontium sulfide (SrS: Tm<sup>3+</sup>, Na<sup>+</sup>) phosphor for NIR light-emitting diode (LED), which shows a narrow emitting band of 27 nm. The successful incorporation of Na<sup>+</sup> into SrS: Tm<sup>3+</sup> contributes to the suppression of lattice phonons, resulting in significant improvement in EQE from 33.6% to 53.7% and an increase in thermal stability. The efficient host absorption and energy transfer are facilitated by the crystallographic Sr defects and the distortion in the symmetric crystal, disclosed by solid-state NMR, electron paramagnetic resonance (EPR), transient spectra, and X-ray total scattering analysis. Subsequently, efficient identification of vascular patterns based on the differential absorption of hemoglobin enables the potential application of rare-earth luminescent materials in NIR phosphor-converted light-emitting diodes (pc-LEDs) and bioimaging.","PeriodicalId":268,"journal":{"name":"Chem","volume":"15 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPub Date : 2024-10-21DOI: 10.1016/j.chempr.2024.09.029
Alexandros A. Kitos, Raúl Castañeda, Zachary J. Comeau, Niki Mavragani, Nicholas D. Calvert, Alexia Kirby, Francisco M. Martinez-Santiesteban, Peter J. Pallister, Timothy J. Scholl, Muralee Murugesu, Adam J. Shuhendler, Jaclyn L. Brusso
{"title":"Cluster-based redox-responsive super-atomic MRI contrast agents","authors":"Alexandros A. Kitos, Raúl Castañeda, Zachary J. Comeau, Niki Mavragani, Nicholas D. Calvert, Alexia Kirby, Francisco M. Martinez-Santiesteban, Peter J. Pallister, Timothy J. Scholl, Muralee Murugesu, Adam J. Shuhendler, Jaclyn L. Brusso","doi":"10.1016/j.chempr.2024.09.029","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.09.029","url":null,"abstract":"Transition metal molecular clusters hold great promise as magnetic resonance imaging (MRI) probes, where careful chemical design can afford control over the size, shape, and total spin state of the contrast agent (CA). Although such clusters can act as a single entity, exhibiting advanced <em>in situ</em> reactivity to key diagnostic biomolecules, their dissociation/speciation in biological media hinders their potential as MRI CAs. To resolve this, the <em>N</em>-2-pyrimidylimidoyl-2-pyrimidylamidine chelate was employed to selectively bind 3d metal ions, forming highly stable mixed-metal clusters. Through spectroscopic, electrochemical, and magnetic analysis, along with <em>in vitro</em> and <em>in vivo</em> studies, the application of iron and manganese homo- and heterometallic complexes as MRI CAs capable of mapping tumor redox status through a simple <em>T</em><sub>1</sub>w/<em>T</em><sub>2</sub>w ratiometric approach was demonstrated. The use of heteropolynuclear 3d super-atomic complexes suitable for semi-quantitative <em>in vivo</em> MRI of tissue redox status opens new avenues for non-invasive characterization of biochemical microenvironments by MRI.","PeriodicalId":268,"journal":{"name":"Chem","volume":"12 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPub Date : 2024-10-21DOI: 10.1016/j.chempr.2024.09.027
Chenchen Du, Alex C. Padgham, Anna G. Slater, Liang Zhang
{"title":"Efficient flow synthesis of a Star of David [2]catenane and a pentafoil knot","authors":"Chenchen Du, Alex C. Padgham, Anna G. Slater, Liang Zhang","doi":"10.1016/j.chempr.2024.09.027","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.09.027","url":null,"abstract":"The development of flow processes for metal-ligand self-assembly and ring-closing metathesis has facilitated the efficient and scalable preparation of iron(II) pentafoil knot and Star of David [2]catenane. Use of a flow reactor also enables the formation of the otherwise inaccessible coordinatively labile zinc(II) pentameric helicate, leading to an efficient two-step synthesis of the zinc(II) pentafoil knot. As the first example of topology-synthesis in flow, our work demonstrates that the metal-ligand self-assembly can be readily adapted to flow techniques, even for labile complexes that are difficult to prepare in batches. The method is well-positioned for expansion to other topological complexes made from the metal template approach. Transitioning from laboratory batch synthesis to efficient large-scale production using continuous flow reactors not only paves the way for new applications of flow synthesis in chemical topology but also enhances the accessibility of these “hard-to-make” entangled moieties, thereby opening avenues for exploring their applications in various fields.","PeriodicalId":268,"journal":{"name":"Chem","volume":"12 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}