ChemPub Date : 2024-11-12DOI: 10.1016/j.chempr.2024.10.013
Julie Yi-Hsuan Chen, Qing Shi, Xue Peng, Jean de Dieu Habimana, James Wang, William Sobolewski, Andy Hsien-Wei Yeh
{"title":"De novo luciferases enable multiplexed bioluminescence imaging","authors":"Julie Yi-Hsuan Chen, Qing Shi, Xue Peng, Jean de Dieu Habimana, James Wang, William Sobolewski, Andy Hsien-Wei Yeh","doi":"10.1016/j.chempr.2024.10.013","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.10.013","url":null,"abstract":"We leverage AI-powered <em>de novo</em> protein design to create a new generation of luciferase catalysts, termed the neoLux series, which exhibit superior properties over native luciferases. These features include compact size, robust stability, cofactor independence, efficient cellular expression, higher catalytic efficiency, and unique substrate orthogonality, marking a significant advancement beyond the limitations of native luciferases. Additionally, we computationally designed highly efficient neoLux-fluorescent protein Förster resonance energy transfer (FRET) fusions capable of simultaneous multi-parametric imaging <em>in cellulo</em> and <em>in vivo</em>. Our pioneering approach has created a unified luminescent toolkit to allow for multi-colored tracking of cancer heterogeneity <em>in vivo</em>, paving the way for complex biological discovery.","PeriodicalId":268,"journal":{"name":"Chem","volume":"72 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142599734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPub Date : 2024-11-06DOI: 10.1016/j.chempr.2024.10.007
Wanying Han, Longfei Lin, Ziyu Cen, Yubin Ke, Qian Xu, Junfa Zhu, Xuelei Mei, Zhanghui Xia, Xinrui Zheng, Yaqin Wang, Yani Liu, Mingyuan He, Haihong Wu, Buxing Han
{"title":"One-pot catalytic conversion of polyethylene wastes to gasoline through a dual-catalyst system","authors":"Wanying Han, Longfei Lin, Ziyu Cen, Yubin Ke, Qian Xu, Junfa Zhu, Xuelei Mei, Zhanghui Xia, Xinrui Zheng, Yaqin Wang, Yani Liu, Mingyuan He, Haihong Wu, Buxing Han","doi":"10.1016/j.chempr.2024.10.007","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.10.007","url":null,"abstract":"Chemical upcycling of polyethylene (PE) waste presents a viable and promising approach to address the issues of plastic waste accumulation. However, developing cost-effective and efficient routes for converting PE waste into value-added products remains a challenging task. Here, we report a one-pot, dual-catalyst system for efficient conversion of PE into gasoline without the need for noble-metal catalysts, external hydrogen, or solvents. A gasoline yield of up to 87% is achieved over a dual-catalyst system comprising WZr-KIT-6 and HZSM-5 at 240°C. The WZr-KIT-6 catalyst facilitated the activation and pre-cracking of PE chains into unsaturated oligomers over Si-O-Zr and W-O(H)-Zr sites. These unsaturated oligomers, characterized by increased mobility and reactivity, were subsequently converted into C<sub>4</sub>–C<sub>12</sub> gasoline-range compounds through β-scission, isomerization, and hydride transfer over HZSM-5. The synergistic reaction mechanism over mesoporous and microporous materials was crucial for enhancing the efficiency and selectivity of PE conversion.","PeriodicalId":268,"journal":{"name":"Chem","volume":"31 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPub Date : 2024-11-04DOI: 10.1016/j.chempr.2024.10.008
Linh Duy Thai, Jochen A. Kammerer, Dmitri Golberg, Hatice Mutlu, Christopher Barner-Kowollik
{"title":"Sequence-defined main-chain photoswitching macromolecules with odd-even effect-controlled properties","authors":"Linh Duy Thai, Jochen A. Kammerer, Dmitri Golberg, Hatice Mutlu, Christopher Barner-Kowollik","doi":"10.1016/j.chempr.2024.10.008","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.10.008","url":null,"abstract":"The installation of stimuli-responsive moieties into their main chain maximizes the stimuli response of polymers. Yet, facile and orthogonal synthesis of such complex macromolecules is a daunting challenge, especially for achieving absolute chain-end-group fidelity, monodispersity, and the formation of block copolymers (BCPs). We harness metal-free hydroxyl-yne click and deprotection chemistry to realize monodisperse, sequence-defined oligomers and BCPs featuring α-bisimines as main-chain photoswitches and orthogonally incorporate functional terminal groups (olefins, acrylates, and non-activated alkynes). We reveal the significant influence of the sequence on solution and solid-state material properties, which manifests as a strong odd-even effect on the hydrodynamic volume, glass transition temperature, and BCP domain spacing. The odd-even effect originates from the distinct symmetries of the sequences resulting from our precise synthetic strategy. Thus, our sequence-defined, orthogonal synthesis strategy with near absolute chain-end-group fidelity and wide functional group compatibility paves the way toward complex polymeric materials with precise properties, topology, composition, and main-chain functionalities.","PeriodicalId":268,"journal":{"name":"Chem","volume":"126 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142574648","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPub Date : 2024-11-01DOI: 10.1016/j.chempr.2024.10.004
Jingzhen Du, Benjamin E. Atkinson, John A. Seed, Rebecca F. Sheppard, Floriana Tuna, Ashley J. Wooles, Nicholas F. Chilton, Stephen T. Liddle
{"title":"Strong uranium-phosphorus antiferromagnetic exchange coupling in a crystalline diphosphorus radical trianion actinide complex","authors":"Jingzhen Du, Benjamin E. Atkinson, John A. Seed, Rebecca F. Sheppard, Floriana Tuna, Ashley J. Wooles, Nicholas F. Chilton, Stephen T. Liddle","doi":"10.1016/j.chempr.2024.10.004","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.10.004","url":null,"abstract":"The dominant form of elemental nitrogen on Earth is dinitrogen, but elemental phosphorus is found predominantly as white phosphorus or other singly bonded allotropes. Thus, there is interest in studying diphosphorus derivatives, most notably trapping between metal ions affording diphosphorus in +2, +1⋅, 0, 1−⋅, 2−, and 4− charge states. However, the diphosphorus radical trianion form had previously remained elusive due to the instability of main-group diatomics with large, odd negative charges. Here, we disclose a crystalline diuranium diphosphorus radical trianion complex with strong antiferromagnetic uranium-phosphorus magnetic exchange coupling parameters of up to −731 cm<sup>−1</sup>. This value is over five times greater than that of lanthanide analogues and is comparable to or exceeds d-block metal-metal and metal-ligand exchange couplings, despite being based on a 5f metal, which is typically regarded as possessing contracted valence orbitals compared with d-block ions. This highlights exchange-coupled f-element-p-block radical bridged character that can be engendered in molecular magnetism.","PeriodicalId":268,"journal":{"name":"Chem","volume":"4 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPub Date : 2024-11-01DOI: 10.1016/j.chempr.2024.10.006
Xiao-Jing Xie, Heng Zeng, Yong-Liang Huang, Ying Wang, Qi-Yun Cao, Weigang Lu, Dan Li
{"title":"Direct production of o-xylene from six-component BTEXs using a channel-pore interconnected metal-organic framework","authors":"Xiao-Jing Xie, Heng Zeng, Yong-Liang Huang, Ying Wang, Qi-Yun Cao, Weigang Lu, Dan Li","doi":"10.1016/j.chempr.2024.10.006","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.10.006","url":null,"abstract":"Metal-organic frameworks (MOFs) with precisely controlled pore dimensions have greatly enriched the versatility of molecular sieving materials. Here, we report a channel-pore interconnected MOF (JNU-2) for direct production of <em>o</em>-xylene from six-component BTEXs (benzene, toluene, ethylbenzene, <em>o</em>-xylene, <em>m</em>-xylene, and <em>p</em>-xylene) in a single adsorption process. Individual adsorption measurements show complete exclusion of <em>o</em>-xylene and benchmark adsorption of other BTEXs. Competitive adsorption studies reveal record-high adsorption selectivity of other BTEXs over <em>o</em>-xylene. Vapor-phase breakthrough experiments verify its superior separation potential for sieving <em>o</em>-xylene from BTEXs. We further demonstrate <em>o</em>-xylene purification by simply soaking JNU-2 (10 g) in BTEXs (18 mL, 90% <em>o</em>-xylene) at room temperature, realizing an average of 15.2 mL of <em>o</em>-xylene (99.5%+ purity, 94% recovery) for 10 cycles. Considering its exceptional stability, JNU-2 may have great promise for energy-efficient <em>o</em>-xylene separation from BTEXs.","PeriodicalId":268,"journal":{"name":"Chem","volume":"8 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142562007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPub Date : 2024-10-31DOI: 10.1016/j.chempr.2024.10.003
Sangbin Park, Gyumin Kang, Wantae Kim, Sieun Jeon, Myung-Kun Chung, Hee-Seung Lee, Dong Ki Yoon, Sunkyu Han
{"title":"Synthesis of securingine B enables photoresponsive materials design","authors":"Sangbin Park, Gyumin Kang, Wantae Kim, Sieun Jeon, Myung-Kun Chung, Hee-Seung Lee, Dong Ki Yoon, Sunkyu Han","doi":"10.1016/j.chempr.2024.10.003","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.10.003","url":null,"abstract":"In general, natural products exist in their most thermodynamically stable form. Therefore, final stage-reaction conditions leading to thermodynamic equilibrium often facilitate the production of the desired natural products. On the other hand, syntheses of contra-thermodynamic natural products pose greater challenges, as the thermodynamic bias should be overcome. Herein, we present the synthesis of contra-thermodynamic securinega alkaloid securingine B, derived from the more thermodynamically stable isomer secu’amamine D. Harnessing the disparity in triplet energy between two natural products, we have established a photochemical equilibrium favoring securingine B. Conversely, secu’amamine D was reformed from securingine B under thermodynamic equilibrium conditions. Inspired by these observations, we devised a novel type of photoswitching platform by introducing a push-pull system to the securinega framework. By leveraging this new photoswitching scaffold, we have developed a securingine B-inspired photochromic material and, subsequently, exploited it as a photoresponsive chiral dopant.","PeriodicalId":268,"journal":{"name":"Chem","volume":"239 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142556281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Remote optical chirality transfer via helical polyaromatic capsules upon encapsulation","authors":"Hayate Sasafuchi, Mayuko Ueda, Natsuki Kishida, Tomohisa Sawada, Seika Suzuki, Yoshitane Imai, Michito Yoshizawa","doi":"10.1016/j.chempr.2024.09.031","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.09.031","url":null,"abstract":"Helical molecular assemblies have been widely created so far, taking inspiration from helical bioconstructs (e.g., DNAs and proteins). However, the host utilities of such synthetic helices remain largely underdeveloped, particularly as chiroptical nanotools. Here, we report the preparation of new polyaromatic capsules with right- or left-handed quadruple helicity, regulated by chiral saccharide-based side chains attached at the outer surface. The capsule quantitatively encapsulates achiral fluorescent dyes in the cavity. The resultant host-guest complexes display excellent circularly polarized luminescence properties (up to |<em>g</em><sub>lum</sub>| = 1.6 × 10<sup>−2</sup>) derived from the bound dyes, through efficient optical chirality transfer from the outer biochiral groups to the inner achiral dyes via the quadruple helical shell, which represents an unprecedented chiroptical strategy. This nanotool can be applied to spherical fullerene to induce its chirality with high efficiency in solution (up to |<em>g</em><sub>abs</sub>| = 1.0 × 10<sup>−2</sup>) and in the solid state.","PeriodicalId":268,"journal":{"name":"Chem","volume":"1 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Exploring enzymatic degradation, reinforcement, recycling, and upcycling of poly(ester)s-poly(urethane) with movable crosslinks","authors":"Jiaxiong Liu, Ryohei Ikura, Kenji Yamaoka, Akihide Sugawara, Yuya Takahashi, Bunsho Kure, Naomi Takenaka, Junsu Park, Hiroshi Uyama, Yoshinori Takashima","doi":"10.1016/j.chempr.2024.09.026","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.09.026","url":null,"abstract":"Enzymes are highly efficient, chemoselective, and sustainable biocatalysts, standing out as eco-friendly tools to advance the circular plastics economy. Herein, we explored enzymatic reactions of poly(<em>ε</em>-caprolactone)-poly(urethane) (PCL-PUs) in organic solvent under different reaction conditions using Novozym 435 (immobilized lipase) as the enzyme. PCL-PUs with triacetylated γ-cyclodextrin (TAcγCD)-based movable crosslinks (PCL-γCD-PU) not only exhibited excellent mechanical properties due to effective energy dissipation, but also efficient enzymatic degradation that was optimized for increases in TAcγCD content. Under reaction time control, molecular weight and mechanical properties of PCL-γCD-PU were enhanced by a novel enzymatic reinforcement strategy. Without sorting, the degraded products are versatile resources that can be enzymatically closed-loop recycled by switching reaction concentration or enzymatically upcycled into value-added polymers by mixing with selective substrates. The facile polymer structure design combined with enzymatic reactions is expected to provide a broad approach for toughening various polymeric materials and advancing their development as sustainable resources.","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modulating hetero-multimetallic atoms in covalent organic framework for efficient oxidization of olefin compounds","authors":"Qinghao Meng, Panzhe Qiao, Dan Deng, Cheng Zhang, Fengchao Cui, Xianghui Ruan, Yajie Yang, Jiarui Cao, Zeyu Wang, Xujiao Ma, Ye Yuan, Guangshan Zhu","doi":"10.1016/j.chempr.2024.10.001","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.10.001","url":null,"abstract":"Heterogeneous multinuclear catalysts have clear advantages, such as high selectivity, cascading production, and specific chemical transformations, but they are difficult to synthesize due to their high structural complexity. Here, we fabricated crystalline, porous covalent organic frameworks (COFs) with high-density chelating sites by incorporating pyrimidine groups onto their pore wall. Using a molecular coordination imprint strategy, tri-coordination (2N, 1O) and di-coordination (1N, 1O) vacancies were proportionally prepared using Cu(II) ions as templates. Consequently, various hetero-multimetallic assemblies, including Cu(II)/Pd(II), Cu(II)/Fe(III), Cu(II)/Zn(II), and Co(II)/Pd(II), were obtained with tunable ion contents in the range of 3:0 to 3:3 on the COF skeleton. The Cu(II)/Cu(II)/Pd(II)-doped COF sample implemented a sustainable oxidization of olefin compounds, which outperformed all existing catalysts to date for the synthesis of value-added ketone, surpassing 620 times compared with the commercial catalyst (PdCl<sub>2</sub>/CuCl<sub>2</sub>).","PeriodicalId":268,"journal":{"name":"Chem","volume":"10 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ChemPub Date : 2024-10-29DOI: 10.1016/j.chempr.2024.10.002
Dongsheng Mao, Wenxing Li, Xueliang Liu, Jingqi Chen, Dali Wei, Lei Luo, Qianqin Yuan, Yu Yang, Xiaoli Zhu, Weihong Tan
{"title":"Rolling circle amplification-based DNA-enzyme nanostructure for immobilization and functionalization of enzymes","authors":"Dongsheng Mao, Wenxing Li, Xueliang Liu, Jingqi Chen, Dali Wei, Lei Luo, Qianqin Yuan, Yu Yang, Xiaoli Zhu, Weihong Tan","doi":"10.1016/j.chempr.2024.10.002","DOIUrl":"https://doi.org/10.1016/j.chempr.2024.10.002","url":null,"abstract":"Enzymes with ingenious structures and diverse functions are crucial for biomedical applications but face challenges like instability, limited targetability, and delivery complexity. We developed core-shell DNA-enzyme conjugates using rolling circle amplification (RCA), creating RCA-based DNA-enzyme nanostructure (RCA-DEN) for efficient enzyme immobilization and functionalization. RCA-DEN, characterized by densely packed nucleic acids and negligible disruption of enzyme activity, increases the stability of enzymes and nucleic acids while reducing technical difficulties, making it a versatile platform for diverse biomedical applications. This approach facilitates the modular customization of enzymes and the incorporation of functionalities such as aptamers and DNAzymes. The efficacy of RCA-DEN has been demonstrated in several areas, including selective catalysis, cascade catalysis, dynamic monitoring of intracellular chemical processes, and synergistic therapeutic interventions against tumors. Overall, this work provides a new perspective on enzyme immobilization and functionalization, paving the way for broader biomedical applications of enzymes.","PeriodicalId":268,"journal":{"name":"Chem","volume":"79 1","pages":""},"PeriodicalIF":23.5,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142536375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}