{"title":"Molecule-resolvable SERSome for metabolic profiling","authors":"Xinyuan Bi, Xiaohang Qian, Bingsen Xue, Miao Zhang, Shuyu Liu, Haoran Chen, Cheng Jin, Huidong Tang, Jian Ye","doi":"10.1016/j.chempr.2025.102528","DOIUrl":null,"url":null,"abstract":"Multiplexed detection is a challenging yet essential task in analytical chemistry, especially for complex systems. Surface-enhanced Raman spectroscopy (SERS) is a promising analytical tool due to its molecular fingerprinting capability, sensitivity, low cost, and tractability. Considering the molecular profusion and diversity, SERSome, namely, spectral set, facilitates robust detection but is still challenged by spectral overlapping-induced uncertainty of molecular assignment and multiplexed quantification. Herein, we introduce molecule-resolvable (MORE) SERSome, identifying specific analytes contributing to the complex SERS spectra, which are then used in spectral decomposition for multiplexed analysis. Taking metabolic profiling for Alzheimer’s disease as a proof of concept, ten metabolites are screened in human serum. A deep-learning model enables accurate and rapid diagnosis, achieving an area under the receiver operating characteristic curve as high as 91.5%. Comparing with conventional methods, MORE SERSome presents a methodological advancement in multiplexed detection with strong potential for general applications and fundamental research in analytical chemistry.","PeriodicalId":268,"journal":{"name":"Chem","volume":"183 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2025.102528","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Multiplexed detection is a challenging yet essential task in analytical chemistry, especially for complex systems. Surface-enhanced Raman spectroscopy (SERS) is a promising analytical tool due to its molecular fingerprinting capability, sensitivity, low cost, and tractability. Considering the molecular profusion and diversity, SERSome, namely, spectral set, facilitates robust detection but is still challenged by spectral overlapping-induced uncertainty of molecular assignment and multiplexed quantification. Herein, we introduce molecule-resolvable (MORE) SERSome, identifying specific analytes contributing to the complex SERS spectra, which are then used in spectral decomposition for multiplexed analysis. Taking metabolic profiling for Alzheimer’s disease as a proof of concept, ten metabolites are screened in human serum. A deep-learning model enables accurate and rapid diagnosis, achieving an area under the receiver operating characteristic curve as high as 91.5%. Comparing with conventional methods, MORE SERSome presents a methodological advancement in multiplexed detection with strong potential for general applications and fundamental research in analytical chemistry.
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.