Gabriel Sanchez-Cano, Pablo Cristobal-Cueto, Lydia Saez, Antonio Lastra, Ana Marti-Calvo, Juan José Gutiérrez-Sevillano, Sofía Calero, Sara Rojas, Patricia Horcajada
{"title":"利用金属有机框架净化饮用水:去除消毒副产品","authors":"Gabriel Sanchez-Cano, Pablo Cristobal-Cueto, Lydia Saez, Antonio Lastra, Ana Marti-Calvo, Juan José Gutiérrez-Sevillano, Sofía Calero, Sara Rojas, Patricia Horcajada","doi":"10.1016/j.chempr.2024.10.023","DOIUrl":null,"url":null,"abstract":"Water disinfection is one of the most challenging processes for public health. Nevertheless, this process can generate inorganic by-products (chlorite [ClO<sub>2</sub><sup>−</sup>] and chlorate [ClO<sub>3</sub><sup>−</sup>]) associated with human diseases. Recently, the European Union established a permissible maximum concentration of 0.25 mg⋅L<sup>−1</sup> for both oxyanions in drinking water; thus, the existing technologies have to be adapted. Here, the earliest use of metal-organic frameworks (MOFs) in the elimination of the disinfection by-products ClO<sub>2</sub><sup>−</sup> and ClO<sub>3</sub><sup>−</sup> from fresh water is presented. Among the Fe-MOFs proposed, the robust MIL-88B-NH<sub>2</sub> demonstrated exceptional oxyanions elimination capacities (100% and 30% of ClO<sub>2</sub><sup>−</sup> and ClO<sub>3</sub><sup>−</sup> in 1 and 5 min, respectively). Based on these results, a continuous-flow device based on MIL-88B-NH<sub>2</sub> was tested under simulated realistic conditions, achieving high oxyanions elimination capacities, and the reusability of the system was demonstrated. This pioneering work opens new perspectives in the implementation of MOFs in real drinking water treatment plants (DWTPs).","PeriodicalId":268,"journal":{"name":"Chem","volume":"14 1","pages":""},"PeriodicalIF":19.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drinking water purification using metal-organic frameworks: Removal of disinfection by-products\",\"authors\":\"Gabriel Sanchez-Cano, Pablo Cristobal-Cueto, Lydia Saez, Antonio Lastra, Ana Marti-Calvo, Juan José Gutiérrez-Sevillano, Sofía Calero, Sara Rojas, Patricia Horcajada\",\"doi\":\"10.1016/j.chempr.2024.10.023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water disinfection is one of the most challenging processes for public health. Nevertheless, this process can generate inorganic by-products (chlorite [ClO<sub>2</sub><sup>−</sup>] and chlorate [ClO<sub>3</sub><sup>−</sup>]) associated with human diseases. Recently, the European Union established a permissible maximum concentration of 0.25 mg⋅L<sup>−1</sup> for both oxyanions in drinking water; thus, the existing technologies have to be adapted. Here, the earliest use of metal-organic frameworks (MOFs) in the elimination of the disinfection by-products ClO<sub>2</sub><sup>−</sup> and ClO<sub>3</sub><sup>−</sup> from fresh water is presented. Among the Fe-MOFs proposed, the robust MIL-88B-NH<sub>2</sub> demonstrated exceptional oxyanions elimination capacities (100% and 30% of ClO<sub>2</sub><sup>−</sup> and ClO<sub>3</sub><sup>−</sup> in 1 and 5 min, respectively). Based on these results, a continuous-flow device based on MIL-88B-NH<sub>2</sub> was tested under simulated realistic conditions, achieving high oxyanions elimination capacities, and the reusability of the system was demonstrated. This pioneering work opens new perspectives in the implementation of MOFs in real drinking water treatment plants (DWTPs).\",\"PeriodicalId\":268,\"journal\":{\"name\":\"Chem\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":19.1000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chempr.2024.10.023\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.chempr.2024.10.023","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Drinking water purification using metal-organic frameworks: Removal of disinfection by-products
Water disinfection is one of the most challenging processes for public health. Nevertheless, this process can generate inorganic by-products (chlorite [ClO2−] and chlorate [ClO3−]) associated with human diseases. Recently, the European Union established a permissible maximum concentration of 0.25 mg⋅L−1 for both oxyanions in drinking water; thus, the existing technologies have to be adapted. Here, the earliest use of metal-organic frameworks (MOFs) in the elimination of the disinfection by-products ClO2− and ClO3− from fresh water is presented. Among the Fe-MOFs proposed, the robust MIL-88B-NH2 demonstrated exceptional oxyanions elimination capacities (100% and 30% of ClO2− and ClO3− in 1 and 5 min, respectively). Based on these results, a continuous-flow device based on MIL-88B-NH2 was tested under simulated realistic conditions, achieving high oxyanions elimination capacities, and the reusability of the system was demonstrated. This pioneering work opens new perspectives in the implementation of MOFs in real drinking water treatment plants (DWTPs).
期刊介绍:
Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.